
A Definition of Data Consistency

Using Event Lattices

Christian Rehn
Institut für Informatik

Technische Universität München
85748 Garching, Germany

Abstract Replication of data is a common tech-
nique to enhance performance in distributed sys-
tems in which multiple activities use shared pas-
sive objects. If replicated data is updateable rather
than read-only, modifications must be propagated to
other copies of the replicated data in order to assure
a consistent view. The delay of update propagations
affects the observations of activities running on the
different nodes of a distributed system. Read oper-
ations on the same passive object may return dif-
ferent values depending on the nodes they are exe-
cuted on and the replica being accessed. A memory
consistency model defines the legal ordering of data
modifications issued by an activity on a node of the
distributed system, as observed by remote activities.
This paper presents a formal definition of the term
data consistency using an event lattice model. With
this definition the consistency of an arbitrary exe-
cution of a concurrent system can be determined.

Keywords: consistency model, event lattices, dis-
tributed systems, shared memory paradigm

1 Introduction

Replication of data is a common technique to
enhance performance in distributed systems in
which multiple activities use shared passive ob-
jects for indirect communication. Replication
is the ability to provide local copies of data, so
that there is no need to access that information
across the network, thus providing improved
local processing performance.

If replicated data is updateable rather than
read-only, modifications must be propagated to

other copies of the replicated data in order to
assure a consistent view. To reduce network
traffic and maintain reasonable response times
and system throughput rates, changes are often
not instantly propagated to the copies but de-
layed until certain synchronization operations
are executed. The extent to which updates
may be deferred is variable. In particular they
vary as to the degree of data consistency they
provide as opposed to the amount of indepen-
dence that is supported.

The delay of update propagations affects the
observations of activities running on the differ-
ent nodes of a distributed system. Read oper-
ations on the same passive object may return
different values depending on the nodes they
are executed on and the replica being accessed.
A memory consistency model defines the legal
ordering of data modifications issued by an ac-
tivity on a node of the distributed system, as
observed by remote activities. A strong con-
sistency model means that updates are propa-
gated more or less immediately between repli-
cas. Therefore read operations on a data item
should return a value that shows the result of
the ’last’1 write operation on that data. Weak
consistency models allow the delay of update
propagation and result in different local views
on the ordering of data modifications and the
actual value. Therefore the consistency model
restricts the values that a read operation on a
data item can return.

1As there normally is no global clock in a distributed
system it is difficult to define precisely which write op-
eration is the last one.



This paper presents a formal definition of
data consistency in distributed systems using
an event lattice model. Section 2 introduces
the model of event lattices to describe the ex-
ecution of activities in a distributed system.
In section 3 this model is used to define the
terms ’consistent execution’ and ’consistency
rule’. Section 4 combines the results from sec-
tion 2 with the consistency models known from
literature. Finally section 5 summarizes the re-
sults of this paper.

2 Event Lattice Model

The execution of a single activity results in
a program-ordered linear event trace [DR95].
Assuming that a start-synchronization takes
place between a dynamically created activity
and its creator and a stop-synchronization oc-
curs between a terminating activity and its cre-
ator, the event traces can be combined accord-
ing to their creation and termination depen-
dencies in order to model a global view on a
distributed execution of a concurrent program.
This combination of traces results in an event
lattice structure [Reh03].

Definition 1 (event lattice)
An event lattice L is a 4-tuple (E, v, D, W )
where

• E is a finite, nonempty set of events;

• v is a partial order on E; e1 v e2, e1 6= e2

implies that the computation of event e2

depends on e1, i.e. the execution of e1

must be finished before e2 can be exe-
cuted;

• (E, v) is a lattice;

• D is a finite nonempty set of data objects;

• W is the family (We | e ∈ E) of the spheres
of action of the events in E. Each sphere of
action We is a pair (Ve, Ne) where Ve ⊆ D
is the set of input data and Ne ⊆ D is the
set output data of event e.

Figure 1 illustrates the Hasse diagram2 for the
event lattice in example 1 showing the execu-
tion of three activities A, B and C. Event lat-
tices can describe executions at different levels
of granularity. In figure 1 an event e ∈ E mod-
els a read, write or synchronization event which
is appropriate for defining consistency. Exam-
ples for read events are a4 and b4, for write
events a3 and b3. Synchronization events are
involved in the coordination of executions. It
may be the creation of a new activity (start-
synchronization, for example a1 and b1 in fig-
ure 1), a stop-synchronization (for example b6

and a5) or any other alternative to synchronize
the execution of activities as for example syn-
chronous message passing (a2, c2) or barriers
(ab1). An instance of an event lattice for this
level of granularity looks as follows:

Example 1
• E = {a1, a2, . . . , a5, ab1, b1, b2, . . . , b6,

c1, c2, c3, c4},

• v is the reflexive and transitive closure of
{(a1, a2), (a2, a3), (a3, ab1), (ab1, a4),
(a4, a5), (a1, b1), (b1, b2), (b2, b3),
(b3, ab1), (ab1, b4), (b4, b5), (b5, b6),
(b2, c1), (b6, a5), (c1, c2), (c2, c3), (c3, c4),
(a2, c2), (c4, b5)},

• D = {x, y}

• ∀e ∈ E\{a4, b4} : Ve = ∅,
Va4 = {y}, Vb4 = {x},
∀e ∈ E\{a3, b3, c3} : Ne = ∅,
Na3 = Nc3 = {x}, Nb3 = {y}

A single event lattice L models not only one
execution but a set of executions ex(L) =
{x1, x2, . . . , xn} as v only describes the min-
imal ordering requirements on E. For exam-
ple all sequential executions on a single node
exseq(L) ⊆ ex(L) which means all extensions
of the v relation that are a total order on E
are executions of L.

The event lattice model introduced above
can describe the data objects involved in an

2Here the smallest element is on the left in contrast
to the usual illustrations of Hasse diagrams where the
smallest element is at the bottom.



Figure 1: Hasse diagram of an event lattice

event occurrence but not the range of values a
data object can hold and the effect of an event
execution on a data object. In order to include
the semantics of a system execution, an inter-
pretation I must be added to an event lattice
L.

Definition 2 (interpreted event lattice)
An interpretation I of an event lattice L is a
pair (Z, F) where

• Z is the family (Z(d) | d ∈ D) of ranges of
values of the data objects d ∈ D;

• F is the family (fe | e ∈ E) of functions of
the events in E. For each event e ∈ E the
function fe is a total mapping

fe : "
v∈Ve

Z(v) → "
n∈Ne

Z(n)

An interpreted event lattice (L, I) is com-
posed of an event lattice L and an associated
interpretation I.

In the following we write the functions fe

for the read and write events e ∈ E as a pair
a(b) where a ∈ {R,W} indicates if it is a read
or a write event and b is the identifier of the
data object. We assume that for a read event
e the sphere of action is given by Ve = {b} and
Ne = ∅ and for a write event e′ by Ve′ = ∅
and Ne′ = {b}. To define consistency it is nec-
essary to choose an appropriate event granu-
larity. Therefore an instruction that reads the
values of a number of data objects and writes
a result computed from the returned values to
a data object is considered as a number of sin-
gle read events and one write event if the in-
struction is not executed atomically. Figure 1

already shows the interpreted version of the
event lattice from example 1.

For a single event lattice L and a given inter-
pretation I there may exist distinguishable ex-
ecutions as the read operations may return dif-
ferent values according to the actual event oc-
currences of unordered, i.e. concurrent events.

Definition 3 (concurrent events)
Let L = (E, v, D, W ) be an event lattice. We
call two events ei and ej concurrent if they are
not ordered by the relation v, i.e. (ei, ej) 6∈ v
and (ej , ei) 6∈ v.

Events a3 and c3 are an example for concurrent
events in figure 1.

The set of executions ex(L) of the uninter-
preted event lattice is segmented into disjoint
non-empty subsets X1, X2, . . . , Xl, where Xi

is the set of undistinguishable executions of the
interpreted event lattice (L, I). In order to de-
scribe a subset Xi ∈ ex((L, I)) the pairs a(b)
presenting read and write events can be ex-
tended to triples a(b)c where c is the value read
or written in an execution x ∈ Xi. We write
ex(e) = a(b)c, e ∈ E for a read or written event
occurrence.

3 Consistent Executions

After introducing the event lattice model the
term ’consistency’ is defined in this section
based on event lattices. We start by asking:
what is a minimal consistent execution, what
are the least possible demands on the execution
of a concurrent system regarding the values re-
turned by read events. To answer this question



we take a look at the v relation of an event lat-
tice L = (E, v, D, W ). v is the result of the
the total order of events executed in a single
activity (activity-order) and the order intro-
duced by synchronization dependencies (sync-
order). A minimal consistent execution must
definitely be consistent with the v relation. In
addition there is a natural order on read and
write events as a value cannot be read before
it has been written. We call this dependency
the causal-order.

Definition 4 (causal-order vc)
Let L = (E, v, D, W ) be an event lattice and
let (L, I) be an interpreted event lattice. As-
suming that all values c ∈ Z(b) written to data
objects b ∈ D in an execution x ∈ ex((L, I))
are distinguishable3:

vc := {(ei, ej) | ∃b ∈ D, ∃c ∈ Z(b) :
ei ∈ EW (b)c, ej ∈ RR(b)c}

where

EW (b)c := {e ∈ E | ex(e) = W (b)c}
for b ∈ D, c ∈ Z(b)

ER(b)c := {e ∈ E | ex(e) = R(b)c}
for b ∈ D, c ∈ Z(b)

A minimal consistent execution of an inter-
preted event lattice (L, I) is an execution x ∈
ex((L, I)), so that the Hasse diagram aug-
mented by the causal-order is still a Hasse di-
agram which means it is acyclic. It is minimal
in the sense that you can abandon neither the
activity- nor the sync-order, as it is defined in
the source code by the application developer
and you cannot abandon the causal-order as
the writing of a value is an indispensable con-
dition for reading it.

Definition 5 (min. consistent execution)
Let L = (E, v, D, W ) be an event lattice, I =
(Z,F) an interpretation of L and ex((L, I))

3In the rest of this paper we assume that all values
written to data objects are distinguishable. Therefore
we can always unambiguously determine the write event
a read event causally dependes on, i.e. which event
wrote the value returned by a read event.

the set of executions for (L, I). An execution
x ∈ ex((L, I)) is minimal consistent iff v ∪ vc

is an order relation.

To illustrate minimal consistency figure 2
shows two Hasse diagram clippings. The clip-
ping on the left is not part of a minimal con-
sistent execution whereas the clipping on the
right meets the requirements of definition 5.

Minimal consistency is the weakest demand
on an execution. By adding additional rules we
get stronger consistency models. One possible
rule might be ’all read events of a data object
d ∈ D that read the value v ∈ Z(d) must be
executed before the write of a different value w
into d’. In general consistency rules add addi-
tional order restrictions to the v relation of an
event lattice and have the structure described
in definition 6.

Definition 6 (data consistency rule)
Let L = (E, v, D, W ) be an event lattice. A
data consistency rule or short consistency rule
on L is an extension vr of the relations v ∪ vc

which has one of the following forms:

• (e1, e2) ∈ v, e1 ∈ F ⊆ E, e2 ∈ G ⊆ E ⇒
∀e3 ∈ H ⊆ E, ∀e4 ∈ G ⊆ E :
(e3, e4) ∈ vr or

• (e1, e2) ∈ v ∪ vc, e1 ∈ F ⊆ E,
e2 ∈ G ⊆ E ⇒
∀e3 ∈ H ⊆ E, ∀e4 ∈ G ⊆ E :
(e3, e4) ∈ vr

Using consistency rules we can now define
the term ’consistent execution’.

Definition 7 (consistent execution)
Let R = {r1, r2, . . . , rm} be a set of con-
sistency rules defining the relations vr1 , vr2

, . . . , vrm and let (L, I) be an interpreted
event lattice. Let vR be the union of all re-
lations defined by the rules, vR :=vr1 ∪ vr2

∪ · · · ∪ vrm .

An execution x ∈ ex((L, I)) of the inter-
preted event lattice is consistent in regard to
the set of rules R iff v ∪ vc ∪ vR is an order
relation.



Figure 2: (a) Violation of minimal consistency requirements; (b) clipping of a minimal consistent
execution;

The next section will present three consis-
tency models described in literature and the
corresponding consistency rules.

4 Consistency Rules

There exist a lot of publications mainly in
the field of distributed shared memory (DSM)
systems concerning consistency models [AG96,
CBZ91, CBZ95, ZIS+97]. In this section we
will translate three known consistency models
into data consistency rules (see definition 6). If
all executions that are possible with a specific
memory system implementation meet a set of
rules R we say the memory system implements
the consistency model described by the rules in
R.

We start by identifying the rules for causal
consistency as the translation of the defini-
tion into rules is simple and straight forward.
[Tan95] defines causal consistency as follows:
’For a memory to be considered causally con-
sistent, it is necessary that the memory obey
the following condition: Writes that are poten-
tially causally related must be seen by all pro-
cesses in the same order. Concurrent writes
may be seen in a different order on different
machines.’ The rule for causal consistency is
given in definition 8.

Definition 8 (causal consistency rule)
∀b ∈ D, ∀c, d ∈ Z(b), c 6= d:
(e1, e2) ∈ v, e1 ∈ ER(b)c, e2 ∈ EW (b)d ⇒
∀e3 ∈ ER(b)c, ∀e4 ∈ ER(b)d : (e3, e4) ∈ vcausal

Figure 3 shows two Hasse diagram clippings
to illustrate the causal consistency rule. The

precedence constraint resulting from vcausal is
drawn with dotted lines. As there is a cycle in
the left clipping it is not part of a causal con-
sistent execution but there is no cycle in 3(b).

A slightly weaker consistency model is called
FIFO consistency which is defined as fol-
lows [Tan95]: ’Writes done by a single process
are seen by all other processes in the order in
which they were issued, but writes from differ-
ent processes may be seen in a different order
by different processes.’ The FIFO consistency
rule looks as follows:

Definition 9 (FIFO consistency rule)
∀b ∈ D, ∀c, d ∈ Z(b), c 6= d:
(e1, e2) ∈ v, e1 ∈ EW (b)c, e2 ∈ EW (b)d ⇒
∀e3 ∈ ER(b)c, ∀e4 ∈ ER(b)d : (e3, e4) ∈ vFIFO

If the FIFO consistency rule is applied to
figure 3(a) the Hasse diagram remains acyclic.
This proves that FIFO consistency is weaker
than causal consistency. We get the same re-
sult by looking at the rules

• causal-order (definition 4):
(e1, e2) ∈vc, e1 ∈ EW (b)c, e2 ∈ ER(b)c

• left side of causal consistency rule (defini-
tion 8):
(e1, e2) ∈v, e1 ∈ ER(b)c, e2 ∈ EW (b)d

Both relations together imply the left side of
the FIFO consistency rule in definition 9.

Finally we will define rules for the strongest
possible consistency model that can be imple-
mented without a global clock. [Tan95] defines
sequential consistency as follows: ’The result of
any execution is the same as if the (read and



Figure 3: (a) Violation of causal consistency requirements; (b) clipping of a causal consistent
execution;

write) operations by all processes on the data
store were executed in some sequential order,
and the operations of each individual process
appear in this sequence in the order specified
by its program.’ In other words, an execution
is sequentially consistent if there exists a total
ordering vt of all events which is an extension
of the ordering v. In addition vt must be con-
sistent with the causal-order vc which means
a write event e ∈ W (x)c must appear before
all read events ei ∈ R(x)c and no other read or
write events ej ∈ W (x)d ∪ R(x)d are allowed
to appear between e and ei.

Sequential consistency can be defined by the
following three rules:

Definition 10 (sequential cons. rules)
∀b ∈ D, ∀c, d ∈ Z(b), c 6= d:

1. (e1, e2) ∈ v ∪ vc, e1 ∈ EW (b)c,
e2 ∈ ER(b)d ⇒
∀e3 ∈ ER(b)c, e4 ∈ EW (b)d : (e3, e4) ∈vseq

2. (e1, e2) ∈ v ∪ vc, e1 ∈ EW (b)c,
e2 ∈ EW (b)d ⇒
∀e3 ∈ ER(b)c : (e3, e2) ∈vseq

3. (e1, e2) 6∈ v ∪ vc, e1 ∈ EW (b)c,
e2 ∈ EW (b)d ⇒
(e1, e2) ∈vseq ∨ (e2, e1) ∈vseq

For an execution to be sequentially consistent,
the first two rules from definition 10 are not
sufficient if the execution contains concurrent

write events on the same data object and at
least one read event that reads the value of one
of the concurrent write events. This situation
is shown in figure 4. Although rules 1 and 2
of Definition 10 have been applied to the event
lattice clipping in figure 4 and the clipping does
not contain a cycle, it is impossible to extend
the partial ordering v ∪ vc to a total ordering
vt of a sequential execution:

• If (bm, aj) ∈vt then (al, aj) ∈vseq ac-
cording to rule 2 in definition 10. This
leads to the cycle aj → ak → al → aj .
Therefore 1 must be written to object x
before the 2 is written, i.e. (aj , bm) ∈vt.

• The same is true for ai and bn. If (ai, bn) ∈
vt then (bo, bn) ∈vseq according to rule
2 in definition 10. This leads to the cy-
cle bn → bo → bn. Therefore 3 must be
written to object y before the 4 is written,
i.e. (bn, ai) ∈vt.

• (bn, ai) ∈vt and (aj , bm) ∈vt leads to
the contradiction ai → aj → bm → bn →
ai.

Therefore we need a third rule to handle con-
current write events. Applying this rule to the
example in figure 4 results in a cycle as there
is no reasonable way to order the concurrent
write events. Unfortunately the third rule does
not have the form of a consistency rule as de-
scribed in definition 6.



Figure 4: Not sequentially consistent execution

Finally we show that the sequential consis-
tency rules in fact are equivalent to the defi-
nition given above. Assuming we have an ex-
ecution x ∈ ex((L, I)) of an interpreted event
lattice (L, I) that is consistent in regard to
definition 10. We could extend v ∪ vc ∪ vseq

to obtain a total ordering by iteratively se-
lecting events according to v ∪ vc ∪ vseq.
If the choice is not unique we can randomly
choose among the subset of events that are
not preceded by other events that have not
been selected yet. Finally we get a total or-
dering vt of all events which is an extension
of the ordering v ∪ vc. This means that all
write events ei ∈ W (x)c appear before all read
events ej ∈ R(x)c. Due to the definition of
the sequential consistency rules, no other read
or write events ek ∈ W (x)d ∪ R(x)d are al-
lowed to appear between ei and ej . Therefore
x is a sequentially consistent execution. The
reverse is also true as if we take the total order-
ing vt of a sequentially consistent execution x′,
the Hasse diagram augmented by the activity-
order, sync-order, causal-order and the sequen-
tial consistency rules of definition 10 is always
acyclic.

5 Summary

In this paper, we have presented a way to de-
fine consistency models using a model of event
lattices. It turns out that a distributed execu-
tion is consistent if there is no opposition to a
set of rules. So it is not adequate to talk about
consistency alone, we always have to give a set
of rules that must be met. In the case of data
consistency the rules are order relations among
read and write events. If a consistency rule is

violated by an execution the Hasse diagram of
the corresponding event lattice gets cyclic. We
also have identified a minimal set of rules that
must be observed in every execution.

Using three examples, the causal, FIFO and
sequential consistency model, we have shown
how to transform the informal definitions from
literature into consistency rules.

References
[AG96] S. V. Adve and K. Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer,
29(12):66–76, 1996.

[CBZ91] John B. Carter, John K. Bennett, and Willy
Zwaenepoel. Implementation and performance of
Munin. In Proceedings of 13th ACM Symposium
on Operating Systems Principles, pages 152–64.
Association for Computing Machinery SIGOPS,
October 1991.

[CBZ95] J. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Techniques for Reducing Consistency-Related
Communication in Distributed Shared Memory
Systems. ACM Transactions on Computer Sys-
tems, 13(3):205–243, August 1995.

[DR95] Volker Diekert and Grzegorz Rozenberg, editors.
The Book of Traces. World Scientific, Singapore,
1995.

[Reh03] Christian Rehn. Dynamic Global Scheduling in
Cooperative Distributed Systems. In Hamid R.
Arabnia, editor, Proceedings of the International
Conference on Parallel and Distributed Process-
ing Techniques and Applications, PDPTA’2003,
pages 1427–1433, Las Vegas, NV, June 2003.

[Tan95] Andrew S. Tanenbaum. Distributed Operating
Systems. Prentice–Hall International, 1995.

[ZIS+97] Yuanyuan Zhou, Liviu Iftode, Jaswinder Pal
Singh, Kal Li, Brian R. Toonen, Ioannis Schoinas,
Mark D. Hill, and David A. Wood. Relaxed consis-
tency and coherence granularity in DSM systems:
A performance evaluation. In Proceedings of the
ACM SIGPLAN Symposium on Principles and
Practice od Parallel Programming (PPOPP-97),
volume 32, 7 of ACM SIGPLAN Notices, pages
193–205, New York, June 18–21 1997. ACM Press.


