
ABSTRACT 

Software quality is a crucial issue in a society that vitally 
depends on software systems. Software quality 
definitions, standards, and metrics have contributed to the 
improvement of our understanding of this issue. However, 
there is a miss-match between the formalization of 
software quality issues and the practical demands of 
software quality. Software quality is not what we measure 
but what we experience when developing, operating, and 
using software systems over a long period of time. We 
argue, that it is dangerous to try to capture software 
quality merely by a set of numbers in terms of software 
metrics believing that these give an authentic picture. 
Though these numbers are helpful achieving truly high 
quality requires in addition a deep understanding of the 
field as well as valid knowledge on how to attain and 
assure software quality in development. If the top 
management of software dependent companies does not 
have an understanding of what software quality is about, 
all metrics of the world will not save them from their 
project failures. 
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1 SEVEN QUALITIES – THAT’S IT? 

Over the last 40 years, the role of computer programs has 
rapidly evolved from tools for scientific calculations into 
a multi-billion dollar market providing software for 
mission-critical processes and products to the vast 
majority of other industries and businesses. With the rapid 
growth of software in volum and criticality, and the 
dramatically increased life expectancy of software 
products, quality has become imperative.  

Given its brief history compared to traditional industries, 
it comes as no surprise that in many companies the 
importance of software quality is not fully recognized and 
understood in spite of its vital role. Even among experts it 
is still not really clear what software quality actually 
means in all its facets and how it can be achieved. 

Certainly, there are numerous quality standards, e.g. ISO 
9126 [1], that aim at rendering software quality more 
precisely. Usually these definitions list the typical seven 
qualities functionality, correctness, reliability, usability, 
efficiency, maintainability, and portability.  

Though these properties a certainly desirable, their precise 
meaning and the requirements they impose on software 
products are all but clear. For example, the ISO standard 
refines maintainability into changeability and three further 
criteria. According to the standard, changeability is 
supposed to be measurable by regarding the change 

recordability metric, which is given by A divided by B 
where A is the number of functions changed having 
confirmed comments and B the total number of functions 
changed [2]. While commenting changes is useful to some 
extent, it is absolutely unclear how important this aspect 
really is for maintainability at large and what the other 
aspects of equal or even greater importance are. It just 
seems rather obvious that this single metric is neither 
sufficient nor necessary. In fact, its expressiveness is 
limited. One could blame this shortcoming to a large 
unspecific standard. But even well-known and broadly 
accepted metrics, such as McCabe’s Cyclomatic 
Complexity [10], are neither sufficient nor necessary. 
Counterexamples in both directions are trivial to 
construct. 

Of course, maintainability is not the only quality attribute 
in need for a sound clarification. Most of the other 
qualities, with the exception of the more intuitive 
attributes correctness and efficiency, struggle with similar 
troubles at the level of their definition, already.  

Once a quality attribute is clearly understood the question 
of how to enforce it appears to be an even greater 
challenge. 

Outline 

The remainder of this paper develops a new perspective 
for more effective software quality management. After 
giving a few examples for software quality in real life 
software projects in section 2, we will take a more 
detailed look at the extensive work on software quality 
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that already exists and discuss possible reasons for its – at 
least partial – ineffectiveness in section 3. After this, 
section 4 depicts the three main ingredients to a holistic 
approach to software quality comprising a theory of 
software quality, sound criteria and rigid quality 
controlling. Section 5 illustrates this approach by means 
of a detailed quality model for the term maintainability. 
Our experiences with this model in large scale 
commercial projects are summarized in section 5. 

2 REAL LIFE SOFTWARE QUALITY  

Although it is no secret that many commercial software 
projects and products suffer from poor quality it cannot be 
overstressed how far away most real life and even large-
scale software projects are from implementing acceptable 
quality standards.  

While some spectacular software bugs, like the overflow 
that caused the ARIANE 5 rocket failure [17], became 
widely visible and lead to an increased awareness for 
specific techniques in certain situations (e.g. rigorous 
testing of critical systems and advanced verification 
techniques) the bulk of commercial software still seems to 
be built with little quality considerations in mind. We 
draw this conclusion from our own personal experiences 
as well as statistical material.  

2.1 Functionality / Correctness 

The Standish Group reports on software project 
cancellations and cost overruns in 80% of the cases are 
well known [3][4]. According to these empirical studies, 
more than 30% of the projects investigated produced 
software that provided at most 50% of the originally 
specified functionality. In addition to this, one can expect 
that many of the 80% cancelled and late projects had 
severe quality deficits, too 

The issue of functionality and correctness is of course 
crucial. But what does complete functionality and 
correctness mean precisely? One could argue that all of 
the stated requirements (and no others) had to be 
implemented the way they were specified. This road leads 
to the techniques that our colleagues in formal methods 
develop; i.e. develop a precise formal specification and 
then do a formal, or even automated verification of the 
implementation against the specification. Though this 
sounds promising, it underestimates the most important 
issue: getting the right requirements and getting them 
right. Only after the functional requirements are 
appropriate and formalized verification becomes an issue. 
But since we do not really know how to judge whether we 
got “the right requirements” and due to the inherent 
troubles to confirm the validity of a requirements 
specification against the actual desires of users providing 
correct functionality remains a challenge. 

2.2 Maintainability 

Even in the rare cases that a software project could be 
considered successful according to these criteria, that is 
complete functionality in time and budget, the quality of 
the outcome deserves a second, separate look.  

The bulk of the costs for a software system – 80% – does 
not go into initial development but into maintenance [6]. 
Because of this, the maintainability of a software system 
is of paramount importance to many organizations whose 
processes depend on software.  Despite of this fact, our 
survey on software maintenance practices in 2003 [7] 
revealed that 70% of the participating software 
organizations did not regard the maintainability of the 
software they produce at all. 

To us, it is still a mystery how large companies 
deliberately mobilise capital over and over again to 
replace old “legacy” systems with new ones. As a matter 
of fact, some of the new systems expose many of the 
undesirable properties of a typical “legacy” system, just 
after being released. 

2.3 Efficiency and Performance 

Efficiency is another example for frequent shortcomings 
though processing speed and memory consumption are 
rather intuitively comprehensible.  At least three large 
scale commercial projects are known to the authors where 
the performance of the software is unacceptable for 
delivery. In all of these three cases, it is tried to solve this 
problem by switching to more powerful hardware; hence, 
without tackling the root of the actual quality 
shortcoming.  

Again, the reason for this is a lack of understanding what 
software quality is, what the criteria are and how it can be 
influenced. 

2.4 Possible Explanations 

Why is it that the need for quality is widely known and 
accepted but quality seems to be missing in practice?  

First of all, quality costs. Higher efficiency and increased 
security may easily multiply development costs. At the 
same time our software engineering discipline is still 
unable to answer basic economic questions such as “how 
much more costs 10% increased processing speed?” or 
“how many more bugs will be detected before shipping if 
we increase our testing efforts by 20%”. Other industries 
are able to precisely explain the increased price and its 
corresponding benefit. For example, a 3 litre car may cost 
3.000$ more than its 2 litre counterpart. You therefore 
receive a 20% improvement in acceleration and a 30mph 
increased top speed. 



Since we are unable to reason about the costs and benefits 
of software quality in a similarly precise way it is not 
surprising that the average software customers is usually 
unwilling to accept explicit charges for quality issues. As 
a consequence, quality requirements remain often 
unspecified though the target quality profile depends on 
the individual needs of the users of the software system 
and the specification of the quality requirements was  
obviously part of a proper requirements engineering 
process.  

Another major source for quality shortcomings is the 
simple fact that we still do not know what the right 
criteria for high quality software are. For example, it is 
accepted that GOTO is harmful [18]. But, does a 
comprehensive documentation really increase program 
comprehension? Does UML modelling contribute to 
better architectures? We argue that most of the rules 
commonly used during quality management have not been 
derived from a quality goal but selected for one of the 
following two reasons: 1) seen elsewhere … so it cannot 
be wrong or 2) easy to check. Consequently, many of the 
common rules hardly match the actual quality needs. 
Since most software developers are aware of the little 
impact of these rules, they simply ignore them.  

In fact, many software organizations frankly admit that 
the primary purpose of their quality management efforts is 
to get an ISO 9000, CMM, or some other certificate that 
can be used as a selling point. The actual improvement of 
the quality of their products plays a secondary role. 
Though this attitude tastes bitter it is indeed 
comprehensible considering the debatable impact of the 
existing quality guidelines. 

It should not be left unmentioned that there are of course 
many other reasons for the lack of quality in software 
products, such as weak qualification of development 
personnel, which we do not elaborate in greater detail, 
here.  

3 WORK ON SOFTWARE QUALITY 

Definitions of software quality and ways to enforce it are 
investigated in various research projects that deal with 
software metrics, quality models, quality management 
processes, or work that is dedicated to a certain topic such 
as testing or software visualization. 

3.1 Software Metrics 

Following Lord Kelvin’s statement  

“The degree to which you can express something in 

numbers is the degree to which you really understand it.” 

academics and practitioners alike try to better understand 
software quality by means of software metrics for more 

than three decades [8]. Starting from the simplest (but still 
valuable) Lines of Code (LOC) metric to complex object-
oriented metrics like Coupling between Objects (COB) [9] 
the field produced a plethora of process and product 
metrics. This includes well-known works like Halstead’s 
Software Science [19] and McCabe’s Cyclomatic 

Complexity [10]. Standards bodies, such as the ISO [2] 
and IEEE [11], devoted several standards to the field of 
software quality in general and metrics in particular. 

Unfortunately many of the commonly used metrics suffer 
from at least one of the following deficiencies: 

• The metric violates the most basic requirements for 
measures defined in measurement theory [21]. 
Typical examples are calculations that do not respect 
different levels of measurement. A drastic example 
is the Maintainability Index [20], which tries to 
define the maintainability of a system as:  

MI(S) = 171 - 5.2 * ln(aveV) - 0.23 * aveV(g') -  

16.2 * ln (aveLOC) + 50 * sin (sqrt(2.4 *perCM)) 

aveV: avg. Halstead volume aveV 
aveV(g’): avg. cyclomatic complexity 
aveLOC: avg. LOC 
perCM: avg. percentage of lines of comments 

• The metric has never been validated. It remains 
unclear if it actually measures what it is supposed to 
measure [12]. 

• The metric does not measure what was worth 
measuring but what is easy to measure. Many 
metrics focus on syntactic aspects that can be 
measured automatically with a tool. Unfortunately, 
the more important quality issues, such as the usage 
of appropriate data structures, are semantic 
properties that cannot be analyzed automatically. 
Successful manual techniques like reviews [13] 
point out that automation is desirable but not a 
crucial goal. 

• The metric is neither a sufficient nor a necessary 
criterion. It can only serve as a hint. E.g. a 
Cyclomatic Complexity (CC) above 50 does not 
necessarily indicate a weak design; vice versa an ill-
designed system may still have a low CC. 

Nevertheless software metrics can be of high value if 
properly calibrated and applied in a well-controlled 
environment as part of a comprehensive quality model. 

3.2 Quality Models 

As the inadequacy of single metrics became evident many 
research groups developed integrated Quality Models to 
describe software qualities in a more sophisticated way by 
means of a set of hierarchically structured criteria and 



metrics.  Examples are the Factors-Criteria-Metrics 
approach [15], Boehm’s quality model and models used in 
combination with software measurement tools such as the 
SotoGraph [16].  

An example is the refinement of “supportability” into 
“testability”, “extensibility”, “adaptability”, 
“maintainability”, and further more detailed criteria [14]. 
The leaf criteria of this refinement process are expected to 
be concrete enough to be grasped with a metric. The 
metric values may then be propagated and aggregated 
from the leafs up to the root of the refinement tree or 
graph to determine an overall measure, e.g. for 
“supportability”. 

Quality models are trivially superior over the usage of 
single metrics. However, we have not seen yet a 
comprehensive or even commonly accepted model for 
software quality at large or just one of its seven major 
attributes. Most existing models suffer from similar two 
problems like single metrics do. First, it is tried to split the 
target quality attribute into well-known and easily 
measurable criteria and metrics inverting the goal of a 
proper refinement into a bottom-up collection of possible 
contributions to the attribute. As a consequence, truly 
significant factors are frequently ignored and the model 
looses its effectiveness. 

Another danger lies in the fact that it is usually tried to 
limit the complexity of the quality model itself for the 
sake of its own comprehensibility. FCM’s typical 3 level 
structure is simply inadequate. It is just unrealistic to 
expect that such abstract goals like “usability” could be 
broken down into measurable properties in only 2 steps! 
Unfortunately, many quality models are biased by this 
illusion. The outcomes of this are models that fail to 
provide a sound reasoning for the causal connection 
among the goal, criteria, and metrics.  

3.3 Process Versus Product 

It is a widespread belief, that the quality of a product is a 
function of its production process. For example, the Total 
Quality Management (TQM) approach and the ISO 9000 
standard concentrate their improvement efforts on 
organizational and process issues. Capers Jones discusses 
in [22] amongst others the correlation between the CMM 
[23] level of an organization and the number of defects in 
their software products. It is shown that the average defect 
rate decreases with increasing CMM level. However, it is 
also shown, that a strong level 1 organization may deliver 
higher quality products than weak level 5 organizations. 

While the development process certainly does have a 
strong impact on the outcome of the production process 
its relevance must not be overrated. The main purpose of 
the process is to guarantee reliable production of a system 
within time and budget according to its specification. The 
actual quality of the outcome strongly depends on 1) the 

ability to precisely specify the desired quality and 2) the 
possibilities to enforce it through skills and assurance 
techniques. 

3.4 Further Quality Relevant Work 

Besides metrics, quality models and processes, the largest 
part of knowledge about software quality is generated in 
individual works on certain aspects of software quality. 
Formal verification, testing, security, performance 
engineering, software architecture, modelling techniques 
are only a few examples of the research topics that 
contribute to our understanding of software quality.  

While these fields generate valuable insights the missing 
integration and consolidation of the various results limits 
their effectiveness and slows their dissemination into 
practical environments.   

4 A HOLISTIC APPROACH 

We are aiming at a comprehensive, authentic, tractable, 
useful and realistic approach towards software quality 
keeping it simple but nevertheless taking care of all 
relevant factors. This is what we mean if we talk about a 
holistic approach. 

4.1 Software Quality Theory 

In software quality we have to distinguish carefully 
between a) general software quality goals like 
maintainability, etc., b) software quality numbers 
(metrics), and c) actions to guarantee software quality. 
We have to understand how these notions depend on each 
other and influence each other. 

A holistic model of software quality needs a theory of 
these relationships and mutual dependencies. 

A first step can be our quality diagrams given in section 
5.1.  

4.2 Sound Criteria 

The foundations for the specification of quality 
requirements as well as assurance actions are the criteria 
that render quality more precisely. We define three 
requirements for effective quality criteria. 

First, criteria must not be taken from a sole empirical 
origin but also be based on a sound theoretical foundation. 
Today, many criteria are derived from “best practices” in 
specific fields. Although this is not necessarily wrong the 
insufficient understanding of the characteristics of such 
criteria often leads to inappropriate uses and 
misinterpretations. Second, the interdependencies 
between different criteria must be understood. Our third 



requirement is that a quality criterion must be assessable, 
otherwise it cannot become effective. Note, that 
assessable does not necessarily mean automatically 
checkable with a tool. The inability to assess the 
satisfaction of criteria by automated static or dynamic 
source code analysis does not render it irrelevant. 
Generally, many useful criteria need to be assessed in 
semi-automated (e.g. tool supported analysis) or manual 
(e.g. reviews) ways. 

We will only be able to evaluate and manage software 
quality if we can find quality criteria which are fine-
grained enough to be actually assessed and develop a 
clear understanding of their interdependencies. These 
criteria need to be integrated into a holistic quality model 
that describes all relevant quality criteria and how they 
depend on each other.  

Of course, this model must be based on existing software 
engineering knowledge, but it is vital to design it in top-
down manner without limiting oneself to “seen 
elsewhere” criteria. This is particularly important for 
criteria that are not assessable in an automated way.  

4.3 Real-Time Quality Controlling 

Even a truly complete and correct quality model will not 
improve software quality if not enforced. We believe such 
models need to be designed alongside a rigid, continuous, 
pro-active quality controlling process. Only if quality 
defects are detected in a timely manner they can be dealt 
with effectively. 

Unfortunately there is widespread reluctance to install 
continuous quality controlling processes in software 
development as they are accepted in various other 
disciplines. This reluctance is usually justified by the 
costly nature of such processes. We believe that the 
inability of most project managers to foresee the long-
term benefits of such measures is rooted in the remarkable 
insufficient understanding of software quality itself. If a 
holistic quality model could demonstrate the ROI for 
initially costly quality activities the mere change of mind 
of project manners would certainly improve overall 
software quality. 

Key activity of the quality controlling process is the 
continuous assessment of the system. Where recent 
quality assurance activities are often carried out in an 
unstructured manner a holistic quality model would 
clearly define which criteria need to be assessed in what 
way. Depending on the criteria and availability of tools 
this activity consists of automated data collection and 
manual reviews whereas manual activities may be 
supported by tools (semi-automated assessment). 

As the sole assessment of single criteria is not sufficient  
to evaluate system quality the assessment results need to 
be aggregated to be of real use. Since the quality model 

not only lists the criteria but describes their 
interdependencies aggregation rules can be derived from 
the model itself. 

All data and its aggregations must be made available in a 
central place so the ones in charge of quality controlling 
are enabled to quickly determine the systems quality or its 
deficiencies and react in an appropriate manner. 

As continuous quality controlling is a highly complex and 
costly activity the availability of appropriate tools is 
compulsory. Controlling can only be successful if it 
applies scalable assessment tools and an adequate 
environment for collecting and aggregating assessment 
data which is centrally available. 

Another important aspect of quality control concerns a 
meta quality level: The quality control process must 
define measures to assess itself and the underlying model 
such that deficiencies in either part can be as quickly 
determined and corrected as in the system they work on. 

5 MAINTENANCE QUALITY MODEL 

Because such a holistic approach to software quality as a 
whole cannot be accomplished by a single research group 
our work concentrated on creating an exemplary quality 
model for the still complex quality aspect  maintainability.  

As pointed out before, we found designing the 
maintainability quality model (MQM) in a strict top-down 
manner as being crucial. We purposely ignored the 
metrics commonly associated with maintainability and 
focused on substantial quality criteria which we elicited 
from a broad variety of resources including well-known 
work in that field, our own experiences and extensive 
interviews with our project partners in industry. 

5.1 Evolution of the MQM 

For our initial design of the maintenance quality model 
we picked up the basic concept of FCM and other tree-
like quality models. In contrast to previous quality models 
for software maintenance we did not choose 
“maintainability” as the root node of the model. We 
believe for “maintainability” (as for most other –abilities) 
it is less valuable to measure the attribute itself on some 
abstract scale than to determine the resources spend on the 
corresponding activities.  Indeed interviews with our 
project partners in industry unveiled that project managers 
are not interested in “maintainability” per se; the crucial 
parameter for them is the “maintenance effort” (best 
measured in some currency). 

The idea was to successively split up the quality goal 
“maintenance effort” in smaller, more manageable (sub-) 
factors. Each time a factor (or criterion) is split into sub-
criteria a sound explanation for the refinement is required.  



This fine-grained tree-structured model clearly points out 
how sub-criteria influence more general ones vice versa 
the factors they depend on.  

Refining the criteria eventually leads to atomic criteria 
which can be assessed by some kind of checkable metrics.  

The key distinction between our endeavour and previous 
ones is the strict top-down development process. This not 
only led to a quality model with more than 250 nodes 
(though still incomplete) but to a very new insights into 
software maintenance issues. 

An extract of the model is given in Figure 1. Please note 
that the figure is highly simplified to convey the basic 
idea.   

Complexity Recursion Concurrency

Side-Effects DeadCode

Assignments inBoolean Expression UnusedMethods CMM-Level

Automatic Semi-Automatic Manual

Static Struct. Dynamics Change-Mgmt

Testability Comprehensibility Employee turnover Processes

OrganizationProduct

Maintenance Effort

CriterionLegend: -Metric  

Figure 1. MQM Example 

 

This design led to the meta-model depicted as an UML 
class diagram in Figure 2. It shows the basic elements of 
the quality model and their interconnections. The tree-
structure of the quality model is described by the familiar 
composite pattern which has been extended by an 
explanation element that specifically describes how a 
criterion influences its super-criterion. Atomic criteria are 
additionally associated with metrics to assess them. The 
metric can be of one of the following metric classes: 

• Measurement. An automated metric like LOC. 

• Tool supported analysis. A manual analysis 
which is well supported by tools, e.g. clone 
detection. 

• Inspection. An inherently manual analysis; i.e. 
part of a review. 

 

Figure 2.  Initial Meta-Model 

 
To assess the maintenance effort of a system the values 
determined by the metrics need to be aggregated to higher 
levels in the quality model. During this aggregation values 
need to be normalized on a common scale. Depending on 
the requirements this scale may be as simple as an ordinal 
scale (e.g. red, yellow, green) or highly sophisticated (e.g. 
currency units). To stay as flexible as possible the model 
allows the definition of the aggregation algorithm to be 
criterion-specific. Therefore every criterion may be 
equipped with a specific obtainValue()-function. This also 
enables users of the model to parameterize it for a 
particular project situation. 

5.2 Current design of the MQM 

During continuous extension and refinement of the MQM 
it became apparent that the initial, tree-like setup of the 
model could not be kept because it ignores 
interdependencies between separate sub-trees of the 
model. A specific example is the quality criterion which 
bans the usage of code constructs which rely on the 
evaluation order of the compiler. This hampers program 
comprehension and portability alike and should therefore 
be connected to both criteria. As loosing the tree property 
and switching to a general graph as basis of the model 
would have meant to give up on structuring and paving 
the ground for an incomprehensible mess itself we 
searched for other possibilities to organize the model by 
re-inspecting all quality goals collected so far. This 
examination revealed that the existing model was actually 
mixing two different kinds of nodes: maintenance 
activities and system properties.  

We therefore split the existing model in two distinct trees; 
one describing the maintenance activities with 
“maintenance” itself as root node and one describing 
system properties. As we do not only consider the 
software system itself but also the environment 
(employees, infrastructure, processes, etc.) it is developed 
in we labelled the root node of the second tree “situation”.  
For both trees the design process resembles the one of the 



original model. Properties and activities alike are split up 
to an atomic level. Atomic properties can then be 
associated with metrics. 

The two trees are placed at the top and the left hand side 
of a matrix. This matrix indicates how properties 
influence activities (see Figure 3). Please note, that the 
depicted extract is strongly simplified; it does not go 
down to the atomic level and omits the better part of the 
nodes in both trees as well as the metrics and their 
assignment to the atomic activities. 
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Figure 3. Example QM 

As metrics are omitted the figure merely shows which 
properties influence which activities at all. It does not 
show to what degree a specific property influences the 
effort for a specific activity. Do determine the 
maintenance effort of a system (or situation) the 
aggregation mechanism of the original model needs to be 
slightly modified: Every element of the matrix is filled 
with the metric value determined for the atomic 
properties. Depending on the scales used, a general 
function for all elements or functions specific to each 
matrix element are defined to assign the values to the 
affected atomic activities. Further functions are used to 
aggregate these values in the activities tree. 

5.3 MQM Conclusions 

On first sight most people presented with the MQM react 
with the scepticism concerning the size and complexity of 
the model. We are well aware of this fact but claim that 
this complexity is inherent to the problem we tackle. It 
should be not surprising that a complete explanation of 
maintenance efforts cannot be a simple one. 

We furthermore claim that the perceived complexity of 
the model in its entirety does not prevent it from being 
applied effectively. Our experiences (see below) with the 
model are very promising: Only because the MQM 
enabled us to clearly point out the broader context of 
specific quality criteria we were able to convince 
developers and project managers of their value. 

But it is true that the complexity of the model demands a 
set of powerful tools to maintain and apply it. We 
therefore dedicated a lot of effort to the development of a 
database-backed tool that supports maintenance and 
extension of the MQM itself. One of its core features is an 
export facility that generates a hyper-linked HTML 
representation of the model. 

Particularly important was the development of the highly 
extensible and configurable quality assessment tool 
ConQAT. This tool can be easily extended to integrate the 
plethora of available metrics and analysis tools and allows 
the definition of aggregation rules as defined in the 
model. The program is run in a non-interactive manner 
and produces an HTML-formatted output of all relevant 
data. Using it in a nightly build process enables all project 
participants to continuously monitor the system’s state.  

 

6 EXPERIENCES 

The first experiences with the MQM were made during a 
six month test stage where parts of the model were tested 
on an information system in the field of 
telecommunication. From the maintenance point of view 
the system was an ideal candidate as it was large (3.5 
MLOC1 C++, COBOL, Java), long-lived (15 years) and 
had a tremendous change frequency (150 CR/year2).  

It was interesting to see that the company had only a very 
limited quality assurance process that mainly focused on 
correctness of the software though there is highly rigid 
and well-found change, version and build management 
processes.  As experienced before, the reluctance to install 
specific quality measures for maintainability was justified 
by missing resources for this kind of activities. As the 
managers were well aware of costly maintenance 
problems we perceived this as a problem rooted in the 
insufficient understanding of the benefits of specific 
measures and software quality in general. 

The well-known phenomenon of elaborate coding 
convention documents that are never read let alone 
respected could also be found here. As expected the major 

                                                           

1 Million lines of code 

2 Change requests per year 



problems were missing justification for most of the 
guidelines and a literally non-existent mechanism to 
check for compliance with coding conventions. 

A number of criteria defined in the maintenance quality 
model were initially perceived as rather insignificant by 
the project managers and developers but later on turned 
out to be important. For example, as part of source code 
readability, the MQM states precise rules for the naming 
of identifiers. Not only did the detailed explanations of 
the importance of identifier naming help to increase the 
level of conciousness of programmers for the importance 
of this aspect but we also detected some serious problems 
in the existing system. An example is a plethora of non-
English identifiers which not only violate the companies 
own coding guidelines but prove to be troublesome in the 
context of ongoing discussions about off-shoring software 
development. 

Another important quality criterion of particular 
importance in maintaining such a large system is source 
code redundancy (code cloning). Asked for an estimate 
about the percentage of cloned code in the system the 
project manager was already cautious but the total number 
of more than 2.000 code clones of at least 10 lines each 
did indeed surprise him. We believe we could only 
succeed in improving the awareness for this issue 
throughout the whole development team because the 
quality model clearly laid out what consequences cloned 
code has on the maintenance effort. 

Our assumptions about the relevance of criteria which 
cannot be assessed in an automated were confirmed, too. 
One of the most pressing and current maintenance 
problem in the sample project had to do with the 
generation of natural language error messages. With the 
MQM, we could show that at the core of this problem  lies 
an “inadequate algorithm”. An aspect included in the 
MQM but of course one, that can not me checked by any 
kind of automated source code analysis. 

The application of the model of course delivered a 
number of further insights into maintainability. For 
example, the sample project suffered from incredibly long 
compile times that hampered productivity – an issue we 
never came across as a quality factor in previous work on 
maintenance. Closer examination unveiled that the 
problem was due to a misconfiguration of the compiler 
and a great number of superfluous include statements. We 
were pleased to see that our model proved to be robust 
enough to easily incorporate these new insight as new 
criteria. 

Although we were highly satisfied with the results 
obtained by assessing the system in a quality model 
guided way, we feel that the substantial benefit of the 
quality model lies in the possibility to foster a deeper 
understanding of software quality among the developers.  
The model enabled us to successfully promote pro-active 
quality measures for the first time. 

On the negative side, it became clear that most project 
participants found the two-dimensional format of the 
model itself complicated as they were accustomed to  
conventional sequential representations of quality 
guidelines.  Here am HTML version of the model with 
hyper-links between criteria greatly helped to make it 
more accessible but we nevertheless consider generating a 
version of model that resembles traditional guidelines 
more closely. 

7 CONCLUSION 

What we need is a much better understanding of how 
quality is influenced by constructive and analytical quality 
options.  

• How much does the increase of the testing phase 
influence the reliability?  

• What is the most effective way to improve quality? 

• What is the effect of a consequent model driven 
development on the quality? 

At the end quality is a cost issue! Cost effective quality 
management is what we have to aim at. The real issue is, 
how much do I have to spend for which step and action 
during development and maintenance of a software 
system to achieve a certain quality level and profile. 
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