
ABSTRACT

Software quality is a crucial issue in a society that vitally
depends on software systems. Software quality
definitions, standards, and metrics have contributed to the
improvement of our understanding of this issue. However,
there is a miss-match between the formalization of
software quality issues and the practical demands of
software quality. Software quality is not what we measure
but what we experience when developing, operating, and
using software systems over a long period of time. We
argue, that it is dangerous to try to capture software
quality merely by a set of numbers in terms of software
metrics believing that these give an authentic picture.
Though these numbers are helpful achieving truly high
quality requires in addition a deep understanding of the
field as well as valid knowledge on how to attain and
assure software quality in development. If the top
management of software dependent companies does not
have an understanding of what software quality is about,
all metrics of the world will not save them from their
project failures.

KEYWORDS
Software Quality, Software Metrics, Software
Development Processes

1 SEVEN QUALITIES – THAT’S IT?

Over the last 40 years, the role of computer programs has
rapidly evolved from tools for scientific calculations into
a multi-billion dollar market providing software for
mission-critical processes and products to the vast
majority of other industries and businesses. With the rapid
growth of software in volum and criticality, and the
dramatically increased life expectancy of software
products, quality has become imperative.

Given its brief history compared to traditional industries,
it comes as no surprise that in many companies the
importance of software quality is not fully recognized and
understood in spite of its vital role. Even among experts it
is still not really clear what software quality actually
means in all its facets and how it can be achieved.

Certainly, there are numerous quality standards, e.g. ISO
9126 [1], that aim at rendering software quality more
precisely. Usually these definitions list the typical seven
qualities functionality, correctness, reliability, usability,
efficiency, maintainability, and portability.

Though these properties a certainly desirable, their precise
meaning and the requirements they impose on software
products are all but clear. For example, the ISO standard
refines maintainability into changeability and three further
criteria. According to the standard, changeability is
supposed to be measurable by regarding the change

recordability metric, which is given by A divided by B
where A is the number of functions changed having
confirmed comments and B the total number of functions
changed [2]. While commenting changes is useful to some
extent, it is absolutely unclear how important this aspect
really is for maintainability at large and what the other
aspects of equal or even greater importance are. It just
seems rather obvious that this single metric is neither
sufficient nor necessary. In fact, its expressiveness is
limited. One could blame this shortcoming to a large
unspecific standard. But even well-known and broadly
accepted metrics, such as McCabe’s Cyclomatic
Complexity [10], are neither sufficient nor necessary.
Counterexamples in both directions are trivial to
construct.

Of course, maintainability is not the only quality attribute
in need for a sound clarification. Most of the other
qualities, with the exception of the more intuitive
attributes correctness and efficiency, struggle with similar
troubles at the level of their definition, already.

Once a quality attribute is clearly understood the question
of how to enforce it appears to be an even greater
challenge.

Outline

The remainder of this paper develops a new perspective
for more effective software quality management. After
giving a few examples for software quality in real life
software projects in section 2, we will take a more
detailed look at the extensive work on software quality

A Holistic Approach to Software Quality at Work

Manfred Broy, Florian Deißenböck, Markus Pizka
Institut für Informatik

Technische Universität München
Germany – 85748 Garching

{broy, deissenb, pizka}@in.tum.de

that already exists and discuss possible reasons for its – at
least partial – ineffectiveness in section 3. After this,
section 4 depicts the three main ingredients to a holistic
approach to software quality comprising a theory of
software quality, sound criteria and rigid quality
controlling. Section 5 illustrates this approach by means
of a detailed quality model for the term maintainability.
Our experiences with this model in large scale
commercial projects are summarized in section 5.

2 REAL LIFE SOFTWARE QUALITY

Although it is no secret that many commercial software
projects and products suffer from poor quality it cannot be
overstressed how far away most real life and even large-
scale software projects are from implementing acceptable
quality standards.

While some spectacular software bugs, like the overflow
that caused the ARIANE 5 rocket failure [17], became
widely visible and lead to an increased awareness for
specific techniques in certain situations (e.g. rigorous
testing of critical systems and advanced verification
techniques) the bulk of commercial software still seems to
be built with little quality considerations in mind. We
draw this conclusion from our own personal experiences
as well as statistical material.

2.1 Functionality / Correctness

The Standish Group reports on software project
cancellations and cost overruns in 80% of the cases are
well known [3][4]. According to these empirical studies,
more than 30% of the projects investigated produced
software that provided at most 50% of the originally
specified functionality. In addition to this, one can expect
that many of the 80% cancelled and late projects had
severe quality deficits, too

The issue of functionality and correctness is of course
crucial. But what does complete functionality and
correctness mean precisely? One could argue that all of
the stated requirements (and no others) had to be
implemented the way they were specified. This road leads
to the techniques that our colleagues in formal methods
develop; i.e. develop a precise formal specification and
then do a formal, or even automated verification of the
implementation against the specification. Though this
sounds promising, it underestimates the most important
issue: getting the right requirements and getting them
right. Only after the functional requirements are
appropriate and formalized verification becomes an issue.
But since we do not really know how to judge whether we
got “the right requirements” and due to the inherent
troubles to confirm the validity of a requirements
specification against the actual desires of users providing
correct functionality remains a challenge.

2.2 Maintainability

Even in the rare cases that a software project could be
considered successful according to these criteria, that is
complete functionality in time and budget, the quality of
the outcome deserves a second, separate look.

The bulk of the costs for a software system – 80% – does
not go into initial development but into maintenance [6].
Because of this, the maintainability of a software system
is of paramount importance to many organizations whose
processes depend on software. Despite of this fact, our
survey on software maintenance practices in 2003 [7]
revealed that 70% of the participating software
organizations did not regard the maintainability of the
software they produce at all.

To us, it is still a mystery how large companies
deliberately mobilise capital over and over again to
replace old “legacy” systems with new ones. As a matter
of fact, some of the new systems expose many of the
undesirable properties of a typical “legacy” system, just
after being released.

2.3 Efficiency and Performance

Efficiency is another example for frequent shortcomings
though processing speed and memory consumption are
rather intuitively comprehensible. At least three large
scale commercial projects are known to the authors where
the performance of the software is unacceptable for
delivery. In all of these three cases, it is tried to solve this
problem by switching to more powerful hardware; hence,
without tackling the root of the actual quality
shortcoming.

Again, the reason for this is a lack of understanding what
software quality is, what the criteria are and how it can be
influenced.

2.4 Possible Explanations

Why is it that the need for quality is widely known and
accepted but quality seems to be missing in practice?

First of all, quality costs. Higher efficiency and increased
security may easily multiply development costs. At the
same time our software engineering discipline is still
unable to answer basic economic questions such as “how
much more costs 10% increased processing speed?” or
“how many more bugs will be detected before shipping if
we increase our testing efforts by 20%”. Other industries
are able to precisely explain the increased price and its
corresponding benefit. For example, a 3 litre car may cost
3.000$ more than its 2 litre counterpart. You therefore
receive a 20% improvement in acceleration and a 30mph
increased top speed.

Since we are unable to reason about the costs and benefits
of software quality in a similarly precise way it is not
surprising that the average software customers is usually
unwilling to accept explicit charges for quality issues. As
a consequence, quality requirements remain often
unspecified though the target quality profile depends on
the individual needs of the users of the software system
and the specification of the quality requirements was
obviously part of a proper requirements engineering
process.

Another major source for quality shortcomings is the
simple fact that we still do not know what the right
criteria for high quality software are. For example, it is
accepted that GOTO is harmful [18]. But, does a
comprehensive documentation really increase program
comprehension? Does UML modelling contribute to
better architectures? We argue that most of the rules
commonly used during quality management have not been
derived from a quality goal but selected for one of the
following two reasons: 1) seen elsewhere … so it cannot
be wrong or 2) easy to check. Consequently, many of the
common rules hardly match the actual quality needs.
Since most software developers are aware of the little
impact of these rules, they simply ignore them.

In fact, many software organizations frankly admit that
the primary purpose of their quality management efforts is
to get an ISO 9000, CMM, or some other certificate that
can be used as a selling point. The actual improvement of
the quality of their products plays a secondary role.
Though this attitude tastes bitter it is indeed
comprehensible considering the debatable impact of the
existing quality guidelines.

It should not be left unmentioned that there are of course
many other reasons for the lack of quality in software
products, such as weak qualification of development
personnel, which we do not elaborate in greater detail,
here.

3 WORK ON SOFTWARE QUALITY

Definitions of software quality and ways to enforce it are
investigated in various research projects that deal with
software metrics, quality models, quality management
processes, or work that is dedicated to a certain topic such
as testing or software visualization.

3.1 Software Metrics

Following Lord Kelvin’s statement

“The degree to which you can express something in

numbers is the degree to which you really understand it.”

academics and practitioners alike try to better understand
software quality by means of software metrics for more

than three decades [8]. Starting from the simplest (but still
valuable) Lines of Code (LOC) metric to complex object-
oriented metrics like Coupling between Objects (COB) [9]
the field produced a plethora of process and product
metrics. This includes well-known works like Halstead’s
Software Science [19] and McCabe’s Cyclomatic

Complexity [10]. Standards bodies, such as the ISO [2]
and IEEE [11], devoted several standards to the field of
software quality in general and metrics in particular.

Unfortunately many of the commonly used metrics suffer
from at least one of the following deficiencies:

• The metric violates the most basic requirements for
measures defined in measurement theory [21].
Typical examples are calculations that do not respect
different levels of measurement. A drastic example
is the Maintainability Index [20], which tries to
define the maintainability of a system as:

MI(S) = 171 - 5.2 * ln(aveV) - 0.23 * aveV(g') -

16.2 * ln (aveLOC) + 50 * sin (sqrt(2.4 *perCM))

aveV: avg. Halstead volume aveV
aveV(g’): avg. cyclomatic complexity
aveLOC: avg. LOC
perCM: avg. percentage of lines of comments

• The metric has never been validated. It remains
unclear if it actually measures what it is supposed to
measure [12].

• The metric does not measure what was worth
measuring but what is easy to measure. Many
metrics focus on syntactic aspects that can be
measured automatically with a tool. Unfortunately,
the more important quality issues, such as the usage
of appropriate data structures, are semantic
properties that cannot be analyzed automatically.
Successful manual techniques like reviews [13]
point out that automation is desirable but not a
crucial goal.

• The metric is neither a sufficient nor a necessary
criterion. It can only serve as a hint. E.g. a
Cyclomatic Complexity (CC) above 50 does not
necessarily indicate a weak design; vice versa an ill-
designed system may still have a low CC.

Nevertheless software metrics can be of high value if
properly calibrated and applied in a well-controlled
environment as part of a comprehensive quality model.

3.2 Quality Models

As the inadequacy of single metrics became evident many
research groups developed integrated Quality Models to
describe software qualities in a more sophisticated way by
means of a set of hierarchically structured criteria and

metrics. Examples are the Factors-Criteria-Metrics
approach [15], Boehm’s quality model and models used in
combination with software measurement tools such as the
SotoGraph [16].

An example is the refinement of “supportability” into
“testability”, “extensibility”, “adaptability”,
“maintainability”, and further more detailed criteria [14].
The leaf criteria of this refinement process are expected to
be concrete enough to be grasped with a metric. The
metric values may then be propagated and aggregated
from the leafs up to the root of the refinement tree or
graph to determine an overall measure, e.g. for
“supportability”.

Quality models are trivially superior over the usage of
single metrics. However, we have not seen yet a
comprehensive or even commonly accepted model for
software quality at large or just one of its seven major
attributes. Most existing models suffer from similar two
problems like single metrics do. First, it is tried to split the
target quality attribute into well-known and easily
measurable criteria and metrics inverting the goal of a
proper refinement into a bottom-up collection of possible
contributions to the attribute. As a consequence, truly
significant factors are frequently ignored and the model
looses its effectiveness.

Another danger lies in the fact that it is usually tried to
limit the complexity of the quality model itself for the
sake of its own comprehensibility. FCM’s typical 3 level
structure is simply inadequate. It is just unrealistic to
expect that such abstract goals like “usability” could be
broken down into measurable properties in only 2 steps!
Unfortunately, many quality models are biased by this
illusion. The outcomes of this are models that fail to
provide a sound reasoning for the causal connection
among the goal, criteria, and metrics.

3.3 Process Versus Product

It is a widespread belief, that the quality of a product is a
function of its production process. For example, the Total
Quality Management (TQM) approach and the ISO 9000
standard concentrate their improvement efforts on
organizational and process issues. Capers Jones discusses
in [22] amongst others the correlation between the CMM
[23] level of an organization and the number of defects in
their software products. It is shown that the average defect
rate decreases with increasing CMM level. However, it is
also shown, that a strong level 1 organization may deliver
higher quality products than weak level 5 organizations.

While the development process certainly does have a
strong impact on the outcome of the production process
its relevance must not be overrated. The main purpose of
the process is to guarantee reliable production of a system
within time and budget according to its specification. The
actual quality of the outcome strongly depends on 1) the

ability to precisely specify the desired quality and 2) the
possibilities to enforce it through skills and assurance
techniques.

3.4 Further Quality Relevant Work

Besides metrics, quality models and processes, the largest
part of knowledge about software quality is generated in
individual works on certain aspects of software quality.
Formal verification, testing, security, performance
engineering, software architecture, modelling techniques
are only a few examples of the research topics that
contribute to our understanding of software quality.

While these fields generate valuable insights the missing
integration and consolidation of the various results limits
their effectiveness and slows their dissemination into
practical environments.

4 A HOLISTIC APPROACH

We are aiming at a comprehensive, authentic, tractable,
useful and realistic approach towards software quality
keeping it simple but nevertheless taking care of all
relevant factors. This is what we mean if we talk about a
holistic approach.

4.1 Software Quality Theory

In software quality we have to distinguish carefully
between a) general software quality goals like
maintainability, etc., b) software quality numbers
(metrics), and c) actions to guarantee software quality.
We have to understand how these notions depend on each
other and influence each other.

A holistic model of software quality needs a theory of
these relationships and mutual dependencies.

A first step can be our quality diagrams given in section
5.1.

4.2 Sound Criteria

The foundations for the specification of quality
requirements as well as assurance actions are the criteria
that render quality more precisely. We define three
requirements for effective quality criteria.

First, criteria must not be taken from a sole empirical
origin but also be based on a sound theoretical foundation.
Today, many criteria are derived from “best practices” in
specific fields. Although this is not necessarily wrong the
insufficient understanding of the characteristics of such
criteria often leads to inappropriate uses and
misinterpretations. Second, the interdependencies
between different criteria must be understood. Our third

requirement is that a quality criterion must be assessable,
otherwise it cannot become effective. Note, that
assessable does not necessarily mean automatically
checkable with a tool. The inability to assess the
satisfaction of criteria by automated static or dynamic
source code analysis does not render it irrelevant.
Generally, many useful criteria need to be assessed in
semi-automated (e.g. tool supported analysis) or manual
(e.g. reviews) ways.

We will only be able to evaluate and manage software
quality if we can find quality criteria which are fine-
grained enough to be actually assessed and develop a
clear understanding of their interdependencies. These
criteria need to be integrated into a holistic quality model
that describes all relevant quality criteria and how they
depend on each other.

Of course, this model must be based on existing software
engineering knowledge, but it is vital to design it in top-
down manner without limiting oneself to “seen
elsewhere” criteria. This is particularly important for
criteria that are not assessable in an automated way.

4.3 Real-Time Quality Controlling

Even a truly complete and correct quality model will not
improve software quality if not enforced. We believe such
models need to be designed alongside a rigid, continuous,
pro-active quality controlling process. Only if quality
defects are detected in a timely manner they can be dealt
with effectively.

Unfortunately there is widespread reluctance to install
continuous quality controlling processes in software
development as they are accepted in various other
disciplines. This reluctance is usually justified by the
costly nature of such processes. We believe that the
inability of most project managers to foresee the long-
term benefits of such measures is rooted in the remarkable
insufficient understanding of software quality itself. If a
holistic quality model could demonstrate the ROI for
initially costly quality activities the mere change of mind
of project manners would certainly improve overall
software quality.

Key activity of the quality controlling process is the
continuous assessment of the system. Where recent
quality assurance activities are often carried out in an
unstructured manner a holistic quality model would
clearly define which criteria need to be assessed in what
way. Depending on the criteria and availability of tools
this activity consists of automated data collection and
manual reviews whereas manual activities may be
supported by tools (semi-automated assessment).

As the sole assessment of single criteria is not sufficient
to evaluate system quality the assessment results need to
be aggregated to be of real use. Since the quality model

not only lists the criteria but describes their
interdependencies aggregation rules can be derived from
the model itself.

All data and its aggregations must be made available in a
central place so the ones in charge of quality controlling
are enabled to quickly determine the systems quality or its
deficiencies and react in an appropriate manner.

As continuous quality controlling is a highly complex and
costly activity the availability of appropriate tools is
compulsory. Controlling can only be successful if it
applies scalable assessment tools and an adequate
environment for collecting and aggregating assessment
data which is centrally available.

Another important aspect of quality control concerns a
meta quality level: The quality control process must
define measures to assess itself and the underlying model
such that deficiencies in either part can be as quickly
determined and corrected as in the system they work on.

5 MAINTENANCE QUALITY MODEL

Because such a holistic approach to software quality as a
whole cannot be accomplished by a single research group
our work concentrated on creating an exemplary quality
model for the still complex quality aspect maintainability.

As pointed out before, we found designing the
maintainability quality model (MQM) in a strict top-down
manner as being crucial. We purposely ignored the
metrics commonly associated with maintainability and
focused on substantial quality criteria which we elicited
from a broad variety of resources including well-known
work in that field, our own experiences and extensive
interviews with our project partners in industry.

5.1 Evolution of the MQM

For our initial design of the maintenance quality model
we picked up the basic concept of FCM and other tree-
like quality models. In contrast to previous quality models
for software maintenance we did not choose
“maintainability” as the root node of the model. We
believe for “maintainability” (as for most other –abilities)
it is less valuable to measure the attribute itself on some
abstract scale than to determine the resources spend on the
corresponding activities. Indeed interviews with our
project partners in industry unveiled that project managers
are not interested in “maintainability” per se; the crucial
parameter for them is the “maintenance effort” (best
measured in some currency).

The idea was to successively split up the quality goal
“maintenance effort” in smaller, more manageable (sub-)
factors. Each time a factor (or criterion) is split into sub-
criteria a sound explanation for the refinement is required.

This fine-grained tree-structured model clearly points out
how sub-criteria influence more general ones vice versa
the factors they depend on.

Refining the criteria eventually leads to atomic criteria
which can be assessed by some kind of checkable metrics.

The key distinction between our endeavour and previous
ones is the strict top-down development process. This not
only led to a quality model with more than 250 nodes
(though still incomplete) but to a very new insights into
software maintenance issues.

An extract of the model is given in Figure 1. Please note
that the figure is highly simplified to convey the basic
idea.

Complexity Recursion Concurrency

Side-Effects DeadCode

Assignments inBoolean Expression UnusedMethods CMM-Level

Automatic Semi-Automatic Manual

Static Struct. Dynamics Change-Mgmt

Testability Comprehensibility Employee turnover Processes

OrganizationProduct

Maintenance Effort

CriterionLegend: -Metric

Figure 1. MQM Example

This design led to the meta-model depicted as an UML
class diagram in Figure 2. It shows the basic elements of
the quality model and their interconnections. The tree-
structure of the quality model is described by the familiar
composite pattern which has been extended by an
explanation element that specifically describes how a
criterion influences its super-criterion. Atomic criteria are
additionally associated with metrics to assess them. The
metric can be of one of the following metric classes:

• Measurement. An automated metric like LOC.

• Tool supported analysis. A manual analysis
which is well supported by tools, e.g. clone
detection.

• Inspection. An inherently manual analysis; i.e.
part of a review.

Figure 2. Initial Meta-Model

To assess the maintenance effort of a system the values
determined by the metrics need to be aggregated to higher
levels in the quality model. During this aggregation values
need to be normalized on a common scale. Depending on
the requirements this scale may be as simple as an ordinal
scale (e.g. red, yellow, green) or highly sophisticated (e.g.
currency units). To stay as flexible as possible the model
allows the definition of the aggregation algorithm to be
criterion-specific. Therefore every criterion may be
equipped with a specific obtainValue()-function. This also
enables users of the model to parameterize it for a
particular project situation.

5.2 Current design of the MQM

During continuous extension and refinement of the MQM
it became apparent that the initial, tree-like setup of the
model could not be kept because it ignores
interdependencies between separate sub-trees of the
model. A specific example is the quality criterion which
bans the usage of code constructs which rely on the
evaluation order of the compiler. This hampers program
comprehension and portability alike and should therefore
be connected to both criteria. As loosing the tree property
and switching to a general graph as basis of the model
would have meant to give up on structuring and paving
the ground for an incomprehensible mess itself we
searched for other possibilities to organize the model by
re-inspecting all quality goals collected so far. This
examination revealed that the existing model was actually
mixing two different kinds of nodes: maintenance
activities and system properties.

We therefore split the existing model in two distinct trees;
one describing the maintenance activities with
“maintenance” itself as root node and one describing
system properties. As we do not only consider the
software system itself but also the environment
(employees, infrastructure, processes, etc.) it is developed
in we labelled the root node of the second tree “situation”.
For both trees the design process resembles the one of the

original model. Properties and activities alike are split up
to an atomic level. Atomic properties can then be
associated with metrics.

The two trees are placed at the top and the left hand side
of a matrix. This matrix indicates how properties
influence activities (see Figure 3). Please note, that the
depicted extract is strongly simplified; it does not go
down to the atomic level and omits the better part of the
nodes in both trees as well as the metrics and their
assignment to the atomic activities.

Impact AnalysisCompreh.

Modification

Maintenance

Testing

Unit-T Integ.-T

To
o
la

va
ila

b
ili

ty
S

ta
ti
c
 S

tr
uc

.
D

y
n
a
m

ic
s

S
it
ua

ti
o
n

P
ro

d
u

ct
In

fr
a
s
tr

uc
tu

re

T-
Fr

a
m

ew
o
rk

D
e
b
u
g
g
e
r

C
o
n
c
u
rr

e
n
cy

R
e
c
u
rs

io
n

Figure 3. Example QM

As metrics are omitted the figure merely shows which
properties influence which activities at all. It does not
show to what degree a specific property influences the
effort for a specific activity. Do determine the
maintenance effort of a system (or situation) the
aggregation mechanism of the original model needs to be
slightly modified: Every element of the matrix is filled
with the metric value determined for the atomic
properties. Depending on the scales used, a general
function for all elements or functions specific to each
matrix element are defined to assign the values to the
affected atomic activities. Further functions are used to
aggregate these values in the activities tree.

5.3 MQM Conclusions

On first sight most people presented with the MQM react
with the scepticism concerning the size and complexity of
the model. We are well aware of this fact but claim that
this complexity is inherent to the problem we tackle. It
should be not surprising that a complete explanation of
maintenance efforts cannot be a simple one.

We furthermore claim that the perceived complexity of
the model in its entirety does not prevent it from being
applied effectively. Our experiences (see below) with the
model are very promising: Only because the MQM
enabled us to clearly point out the broader context of
specific quality criteria we were able to convince
developers and project managers of their value.

But it is true that the complexity of the model demands a
set of powerful tools to maintain and apply it. We
therefore dedicated a lot of effort to the development of a
database-backed tool that supports maintenance and
extension of the MQM itself. One of its core features is an
export facility that generates a hyper-linked HTML
representation of the model.

Particularly important was the development of the highly
extensible and configurable quality assessment tool
ConQAT. This tool can be easily extended to integrate the
plethora of available metrics and analysis tools and allows
the definition of aggregation rules as defined in the
model. The program is run in a non-interactive manner
and produces an HTML-formatted output of all relevant
data. Using it in a nightly build process enables all project
participants to continuously monitor the system’s state.

6 EXPERIENCES

The first experiences with the MQM were made during a
six month test stage where parts of the model were tested
on an information system in the field of
telecommunication. From the maintenance point of view
the system was an ideal candidate as it was large (3.5
MLOC1 C++, COBOL, Java), long-lived (15 years) and
had a tremendous change frequency (150 CR/year2).

It was interesting to see that the company had only a very
limited quality assurance process that mainly focused on
correctness of the software though there is highly rigid
and well-found change, version and build management
processes. As experienced before, the reluctance to install
specific quality measures for maintainability was justified
by missing resources for this kind of activities. As the
managers were well aware of costly maintenance
problems we perceived this as a problem rooted in the
insufficient understanding of the benefits of specific
measures and software quality in general.

The well-known phenomenon of elaborate coding
convention documents that are never read let alone
respected could also be found here. As expected the major

1 Million lines of code

2 Change requests per year

problems were missing justification for most of the
guidelines and a literally non-existent mechanism to
check for compliance with coding conventions.

A number of criteria defined in the maintenance quality
model were initially perceived as rather insignificant by
the project managers and developers but later on turned
out to be important. For example, as part of source code
readability, the MQM states precise rules for the naming
of identifiers. Not only did the detailed explanations of
the importance of identifier naming help to increase the
level of conciousness of programmers for the importance
of this aspect but we also detected some serious problems
in the existing system. An example is a plethora of non-
English identifiers which not only violate the companies
own coding guidelines but prove to be troublesome in the
context of ongoing discussions about off-shoring software
development.

Another important quality criterion of particular
importance in maintaining such a large system is source
code redundancy (code cloning). Asked for an estimate
about the percentage of cloned code in the system the
project manager was already cautious but the total number
of more than 2.000 code clones of at least 10 lines each
did indeed surprise him. We believe we could only
succeed in improving the awareness for this issue
throughout the whole development team because the
quality model clearly laid out what consequences cloned
code has on the maintenance effort.

Our assumptions about the relevance of criteria which
cannot be assessed in an automated were confirmed, too.
One of the most pressing and current maintenance
problem in the sample project had to do with the
generation of natural language error messages. With the
MQM, we could show that at the core of this problem lies
an “inadequate algorithm”. An aspect included in the
MQM but of course one, that can not me checked by any
kind of automated source code analysis.

The application of the model of course delivered a
number of further insights into maintainability. For
example, the sample project suffered from incredibly long
compile times that hampered productivity – an issue we
never came across as a quality factor in previous work on
maintenance. Closer examination unveiled that the
problem was due to a misconfiguration of the compiler
and a great number of superfluous include statements. We
were pleased to see that our model proved to be robust
enough to easily incorporate these new insight as new
criteria.

Although we were highly satisfied with the results
obtained by assessing the system in a quality model
guided way, we feel that the substantial benefit of the
quality model lies in the possibility to foster a deeper
understanding of software quality among the developers.
The model enabled us to successfully promote pro-active
quality measures for the first time.

On the negative side, it became clear that most project
participants found the two-dimensional format of the
model itself complicated as they were accustomed to
conventional sequential representations of quality
guidelines. Here am HTML version of the model with
hyper-links between criteria greatly helped to make it
more accessible but we nevertheless consider generating a
version of model that resembles traditional guidelines
more closely.

7 CONCLUSION

What we need is a much better understanding of how
quality is influenced by constructive and analytical quality
options.

• How much does the increase of the testing phase
influence the reliability?

• What is the most effective way to improve quality?

• What is the effect of a consequent model driven
development on the quality?

At the end quality is a cost issue! Cost effective quality
management is what we have to aim at. The real issue is,
how much do I have to spend for which step and action
during development and maintenance of a software
system to achieve a certain quality level and profile.

8 REFERENCES

[1] Software engineering – Product quality – Part 1: Quality

Model. ISO/IEC 9126-1, June 2001.

[2] Software engineering – Product quality – Part 3: Internal

metrics. ISO/IEC 9126-3, July 2003.

[3] Standish Group International, Inc. CHAOS. 1995

[4] Standish Group International, Inc. CHAOS: A Recipe for

Success. 1999

[5] Michael L. Brodie, Michael Stonebraker. Migrating Legacy

Systems: Gateways, Interfaces & the Incremental

Approach. Morgan Kaufmann, March 1995

[6] Thomas M. Pigoski. Practical Software Maintenance.
Wiley Computer Publishing, 1996

[7] Karin Katheder, A Survey on Software Maintenance

Practices, Technische Universität München, November
2003

[8] Horst Zuse. A Framework of Software Measurement.
Walter de Gruyter, 1998

[9] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Softw. Eng., 20(6),
1994. Halstead: Software Science

[10] Thomas J. McCabe. A complexity measure. In ICSE ’76:

Proceedings of the 2nd international conference on

Software engineering. IEEE Computer Society Press, 1976

[11] Standard for a software quality metrics methodology. IEEE
1061, 1998

[12] Cem Kaner and Walter P. Bond. Software engineering
metrics: What do they measure and how do we know? In
Proceedings of the 10th International Software Metrics

Symposium. IEEE CS Press, 2004.

[13] Michael E. Fagan. Design and code inspections to reduce
errors in program development. IBM Systems Journal.,
15(3), 1976.

[14] R.B. Grady and D.L. Caswell, Software Metrics:

Establishing a Company-Wide Program, Prentice Hall,
Englewood Cliffs, New Jersey, 1987.

[15] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in

Software Quality. US Rome Air Development Center,
Springfield AD/A-049-015/055, 1977.

[16] Walter R. Bischofberger, Jan Kühl, and Silvio Löffler.
Sotograph - a pragmatic approach to source code
architecture conformance checking. In EWSA, 2004.

[17] J. L. Lions. ARIANE 5 – Flight 501 Failure. European
Space Agency (ESA), July, 1996.

[18] E. W. Dijkstra. Go To statement considered harmful.
Communications of the ACM, 11(3), 1968.

[19] Halstead, Maurice H. Elements of Software Science,

Operating, and Programming Systems Series Volume 7.
New York, NY: Elsevier, 1977.

[20] Software Engineering Institute, Carnegie Mellon
University. Maintainability Index Technique for Measuring

Program Maintainability. January 2004
(http://www.sei.cmu.edu/str/descriptions/mitmpm.html)

[21] N. Fenton. Software measurement: A necessary scientific
basis. IEEE Trans. Softw. Eng., 20(3):199–206, 1994.

[22] C. Jones. Software Assessments, Benchmarks, and Best

Practices. Addison Wesley, 2000.

[23] Paulk, M.C.;Weber C.V.; Curtis, B.; Chrissis, M.B.:The
capability maturity model, guidelines for improving the
software process.Addison-Wesley 1995.

