Software Quality Modelling Put Into Practice

Benedikt Mas y Parareda and Jonathan Streit

itestra GmbH, Ludwigstrasse 35, 86916 Kaufering, Germany
{mas, streit}Qitestra.de
http://www.itestra.de

Abstract. This paper describes experiences from the practical applica-
tion of a conceptual quality model in a large-scale commercial organi-
zation. The goal was to increase the economic efficiency of the existing
application landscape. We used an activity-based two-dimensional qual-
ity model to evaluate software systems and to deduce effective and cost-
efficient quality improvement actions. An important aspect of our work
was the communication of results to the stakeholders, convincing them
to implement the recommended actions.

1 Software quality assessment

Most of today’s businesses strongly depend on large deployments of software,
both for internal operation and as parts of their products. For example, back-
end accounting systems of large companies comprise several million lines of code
and cause significant annual costs. Operation and on-going development—also
known as maintenance [1]—entail the major part of these expenses.

The costs caused by a software system are largely determined by its quality [2]
and the quality of the processes managing the system. The scientific community
has developed various approaches for modeling quality (see [3] for an overview)
and the evaluation of software systems. However, there are only few reports on
how these models can be applied in commercial settings and how they need to
be adapted respectively extended for practical application.

In the past three years, we analysed the quality of software systems with a
total of more than 20 million lines of code of various technologies for different
clients as part of our software quality consulting work [4].

As part of these consulting activities, we adapted the two-dimensional quality
model TUM-QM [3] to allow objective assessments of large scale legacy appli-
cations. These adaptations provide convincing argumentations for economically
justified improvement actions.

1.1 Scientific foundations

The two-dimensional quality model TUM-QM models software quality by sep-
arating a hierarchy of technical and organizational facts of a system from the
activities that are influenced by these facts. Activities drive the costs of the
system under evaluation.

In contrast to other quality models, this approach enables the identification
of defects of great economic relevance and therefore find improvement actions
that deliver an optimal return on investment.

1.2 Instantiation of the quality model

To apply the rather high-level quality meta-model TUM-QM to the analysis
of software systems, we had to determine the particular activities that are of
interest to the owner of the system. Furthermore, we had to find facts influencing
these activities and methods to assess these facts.

A simplified extract of the instantiated quality model is shown in figure 1
(actions are introduced in section 2.1).

Maintenance

Defect
correction

ACTIVITIES

Correctiol

S g
s 2

(1]
E c
— <C

Code Cloning E| E| E| | ——» Cleaning up

Test

Redundancy<RedundantLiterals | —][][| |

Technical
Facts

Fig. 1. A simplified extract of the quality model

Relevant activities. Since the importance of activities corresponds to the rel-
ative costs of these activities, we decided to derive the set of activities directly
from the cost structure used by the clients to perform financial controlling. As
virtually every organization of significant size performs some form of financial
controlling, deriving activities for TUM-QM becomes straightforward and guar-
antees relevance to and understanding by the owner of the system to be assessed.

The main cost items (and corresponding activities) we identified were: de-
velopment, maintenance, operation and hard- and software resources. Each cost
item was split up into more detailed cost items (e.g., user support is contained
within operational cost).

Interestingly, financial controlling data repeatingly shows that operation plus
hard- and software-resources (licenses) cause two thirds of all long-term costs.
Accordingly, technical facts affecting the run-time performance have gained
greater importance during our investigations than previously expected.

Useful facts. The topmost elements of the facts hierarchy, namely strategi-
cal, organisational and technical facts, were inspired by existing catalogues such
as the Software Reengineering Assessment Handbook [5]. Using a top-down ap-
proach, we recursively refined the top-level elements into measurable metrics.
The technical facts extend to areas such as data management and documenta-
tion. All metrics were designed to describe a fact that has a significant impact
on relevant cost items.

Our current facts catalogue contains about 260 facts, measured using both
well-established and innovative metrics such as Code Cloning Ratio, IF-Ratio,
Literal Redundancy, Size of the Identifier Vocabulary, Number of Attributes per
Database Table and Number of Stakeholders actually knowing the system. If pos-
sible, we design our metrics to be intuitively understandable, such as Percentage
of Duplicated Code. Simple scales can be communicated more easily and the
analysis process becomes more comprehensible for observers.

Descriptive facts such as Age of the System, Code Size or Used Programming
Languages that have no apparent economic impact complete the facts catalogue.
These descriptive facts can provide valuable evidence for suggesting efficient
improvement actions and are useful to demonstrate a thorough knowledge of the
system under evaluation.

1.3 Assessment process

Commercial quality assessment has to adhere to rigorous time and budget con-
straints (sometimes only a few hours per system) without sacrificing validity of
the results. Therefore, we apply a combination of assessment methods:

— Stakeholder interviews using a fixed set of approximately 100 questions. The
questions are distributed to the stakeholders beforehand, so that the actual
interview can be conducted in one hour.

— An automated technical analysis using an adapted and extended version of
the toolkit ConQAT [6].

— Analysis of compiler output as well as data from the configuration manage-
ment system and the database management system.

— Structured inspections on a randomized sample of source code and docu-
ments. A scale of school grades is used to rate these properties.

Manual and semi-automatic evaluations play an important role in our assessment
process. This is due to the top-down refinement approach that selects facts ac-
cording to their relevance, regardless of whether they can be assessed by a tool
or not. Experience shows that manual inspections provide extremely valuable

information about the state of a system. Many relevant facts, such as Useful-
ness of Code Comments, can not be evaluated automatically, as they require
semantic understanding and thus human assessment. Although the inspections
are based only on a sample and on subjective judgement, their results are usu-
ally consistent both within different parts of a system and different observers,
and our stakeholders expressed no doubts about their validity. On the contrary,
inspections can serve to collect illustrative excerpts of code or documentation to
support the analysis result.

2 From quality defects to cost reduction

In a commercial environment, measuring quality alone is in vain. A quality anal-
ysis is only worthwhile if improvement actions with quantifiable economic ben-
efits can be derived. Additionally, stakeholders need to be convinced that the
economic advantage is attractive, realistic and achievable with controlled risk.

2.1 Deducing improvement actions

For each fact in our facts catalogue we defined improvement actions that have
a positive impact on this fact. The actions are organized into the categories
process optimization, retrieval and organisation of information, defect correction
and reengineering.

Only improvement actions with an expected positive return on investement
are candidates for implementation. We deduce improvement actions in three
steps:

1. Current data from financial controlling indicates the most expensive activi-
ties.

2. Each of these activities is related to a set of facts through the quality model.
If any of these facts is assessed critically, high potential for economic im-
provement exists.

3. For each improvement action linked to critical facts, a cost-benefit analysis
is performed and presented to management.

As the quality model in its current form does not provide any quantitative in-
formation on the influence a fact has on a cost item, economic potential and
impact of the improvement actions were estimated manually.

2.2 Communication

Stakeholders ranging from top management to programmers are often strongly
attached to a software system—sometimes in an irrational way—and thus un-
willing to accept the need for quality improvement and to initiate and support
the required actions. Hence, a presentation strategy for the results that conveys
the message of economic potential convincingly is crucial for success.

We start our argumentation by explaining the analysis method and describing
the system under evaluation using facts such as Lines of Code or Number of
Database Tables. This phase serves to manifest that a detailed analysis had
taken place.

As a second step, we compare the system under evaluation with other systems
within the same company and the State of the Art in software engineering. This
comparison is made using a benchmark that aggregates a subset of the results.
This benchmarking is crucial, as it gives everybody in the audience a point of
reference for the interpretation of the results. A visualization of the benchmark
results for a set of systems is shown in figure 2. Systems with both high annual
costs and severe quality defects and thus high potential for improvement are
located in the upper right area of the diagram.

Using this picture, we claim that potential for improvement exists and present
our estimate of the investement required to realize this potential.

Subsequently, we support these claims by presenting a selection of metrics
that illustrate the state of the system. We increase the credibility of the metrics
through code snippets and other examples taken from the actual system. Con-
trary to popular belief, these excerpts were very well-received even by manage-
ment audiences and provided strong evidence in discussion. Stakeholders that
had been reluctant to accept that a particular property of their system was
harmful could often be convinced when confronted with an example, such as
redundant pieces of code where the same bug fix had been applied and tested
multiple times.

Finally, we present improvement actions deduced from the assessment re-
sults together with a detailed cost-benefit analysis. This gives everybody in the
audience the chance to identify benefits for their department.

2.3 Successful implementation of improvement actions

We have been able to demonstrate the effectiveness of our analysis method by
implementing the proposed improvement actions.

In one case, for example, the cost data for the system under evaluation showed
high spendings for load-dependent resource usage. In the analysis of the system
we identified inefficient algorithms, indicating potential for improvement. The
cost-benefit analysis suggested a positive return on investement for the opti-
mization of the most expensive components. Hence, this optimization was rec-
ommended to management.

The optimization project proved to be highly successful, as it provided a
positive return on investement after just a few months and created a long-lasting
economic benefit.

3 Conclusion

In this experience report we described how a quality model can be applied in
a commercial environment and the extensions that are needed to perform suc-
cessful software quality assessments. Several of our analyses using the presented

50

-
»*
*
Investment: System 1
25 200.000 $ *
Bench- |«
*
mark
-
e
__ Q- - === mmmmmmemmeeeememeee—meemceocamonee
Absolute benchmark
-25
W
-50
*
*
-75
0 50,000 100,000 200,000 400,000 800,000 1,600,000 3,200,000 6,400,000

Annual cost (in $)

Fig. 2. A sample benchmark analysis. The arrow indicates the technical and the re-
sulting economic improvement opportunity.

method have led to investments in improvement actions. The predicted benefits
were achieved or even exceeded.

In commercial settings, the challenge in quality assessment is not achieving
ultimate precision in measurement, but providing a reliable, objective and sound
estimation of a system’s quality and delivering a convincing business case for
improvement.

Usefulness of TUM-QM. The quality model TUM-QM has proven to be a
valuable base for quality assessments. For our purposes, the main advantage of
TUM-QM is the inclusion of activities in the quality model. This guarantees that
an analysis based on TUM-QM does not evaluate abstract quality, but identifies
properties that entail severe consequences for the selected activities. Supposed
quality defects that only violate the ideal conception of a system but do not
involve a financial penalty are ignored.

Unfortunately, due to the missing valuation of the relation between facts
and activities, the quality model alone is not sufficient to quantify the financial
impact of quality defects. A significant manual effort is required to perform the
cost-benefit analysis of improvement actions. Even an approximate weighting
would greatly reduce the effort required to apply the quality model.

References

1. Pigoski, T.M.: Practical Software Maintenance: Best Practices for Managing Your
Software Investment. John Wiley & Sons, Inc., New York, NY, USA (1996)

2. Wagner, S.: Using Economics as Basis for Modelling and Evaluating Software Qual-
ity. In: Proc. First International Workshop on the Economics of Software and Com-
putation (ESC-1). (2007)

3. Deissenbock, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.F.: An activity-
based quality model for maintainability. In: Proceedings of the 23rd International
Conference on Software Maintenance (ICSM 2007), IEEE CS Press (2007)

4. Mas y Parareda, B., Pizka, M.: Reengineering web-basierter und anderer junger
Legacy-Systeme — Erfahrungsbericht. Technical report, itestra GmbH, Garching,
Germany (2006)

5. Johnson, R.E.: Software Reengineering Assessment Handbook, Version 3.0. US
Department of Defense (1997)

6. Deissenbock, F., Pizka, M., Seifert, T.: Tool Support for Continuous Quality As-
sessment. In: STEP ’05: Proceedings of the Workshop on Software Technology and
Engineering Practice. (2005)

