
The Curse of Copy&Paste — Cloning in Requirements Specifications∗

Christoph Domann
itestra GmbH

Kaufering, Germany
domann@itestra.de

Elmar Juergens
Institut für Informatik

Technische Universität München, Germany
juergens@in.tum.de

Jonathan Streit
itestra GmbH

Kaufering, Germany
streit@itestra.de

Abstract

Cloning in source code is a well known quality defect
that negatively affects software maintenance. In contrast,
little is known about cloning in requirements specifications.
We present a study on cloning in 11 real-world require-
ments specifications comprising 2,500 pages. For speci-
fication clone detection, an existing code clone detection
tool is adapted and its precision analyzed. The study shows
that a considerable amount of cloning exists, although the
large variation between specifications suggests that some
authors manage to avoid cloning. Examples of frequent
types of clones are given and the negative consequences of
cloning, particulary the obliteration of commonalities and
variations, are discussed.

1. Introduction

Cloning in source code has been recognized as a prob-
lem for software maintenance by both the research commu-
nity and practitioners [8]. While the amount of cloned code
varies, cloning exists in virtually all larger systems. Cloning
negatively impacts maintenance activities. It increases pro-
gram size and thus effort for size-related activities such as
inspections. Moreover, it increases effort required for mod-
ification, since a change performed on a piece of code often
needs to be performed on its duplicates as well. Further-
more, unintentionally inconsistent changes to cloned code
frequently lead to errors [7].

Most of the negative effects of cloning in programs also
hold for cloning in requirements specifications. Cloning is
considered an obstacle to requirements modifiability [5] and
listed, for instance, as a major problem in automotive re-
quirements engineering [11].

To the best of our knowledge, though, cloning in require-
ments specifications has not been investigated systemati-

∗This work has partially been supported by the German Federal Min-
istry of Education and Research (BMBF) in the project QuaMoCo (01 IS
08023F and 01 IS 08023B).

cally yet. Given the importance of requirements specifica-
tion quality—errors are known to be costly to correct in later
project phases—and the known negative impact cloning has
on software engineering activities, we consider this precar-
ious for research and practice.

Contributions

• Existing clone detection tools can be applied to the de-
tection of cloning in (textual) requirements specifica-
tions in a straight-forward fashion.

• Real world requirements specifications contain sub-
stantial amounts of cloning, with large variation be-
tween specifications.

• Cloning is often used when slightly varying require-
ments, such as similar use cases, are described. A par-
ticularly negative consequence of cloning in this case
is that it obliterates the commonalities and variations.

2. Detecting Cloning in Specifications

Terms. A specification is interpreted as a sequence of
words. A specification clone is a (consecutive) substring
of the specification with a certain minimal length, appear-
ing at least twice. A clone group contains all clones of a
specification that have the same content. For analyzing the
precision of automated detection, we further distinguish be-
tween relevant clone groups and false positives. Clones of
a relevant clone group must convey semantically similar in-
formation, and this information must be related to the sys-
tem described. Examples of false positives are substrings
that contain the last words of one and the first words of the
subsequent sentence without conveying meaning, headers
or fragments of tables as well as substrings consisting of
document footers or edit histories.

Detection. To identify cloning in requirements specifica-
tions, we adapted existing work from code clone detec-
tion [6]. The detection algorithm operates in three phases,

1



as depicted in Fig. 1. Specialized text extractors were im-
plemented for preprocessing. Existing detection and post-
processing components could be reused.

Pre-
processing Detection

Post-
processingwords

clone
groups

Figure 1. The clone detection phases

• Preprocessing extracts text from requirements speci-
fication documents. Layout information is removed.
Text at the beginning and the end of the document that
does not contain requirements information (such as ti-
tle pages) is discarded. The remaining text is split into
a list of words. If a single specification is spread over
multiple documents, individual word lists are concate-
nated into a single global list.

• Detection searches for clones by locating all equivalent
sublists of the specified minimal length in the word list.
This search is performed in linear time and space com-
plexity using a suffix tree.

• Postprocessing & Output optionally performs filtering
and renders detected clone groups into reports suitable
for manual inspection.

3. Study Description

In order to investigate the nature and extent of cloning
in requirements specifications, we have performed a study
guided by 3 research questions.

3.1. Research questions & study objects

RQ1 How much duplication do real-world requirements
specifications contain?
To evaluate the impact of specification cloning on software
engineering activities, we first need to know if and to which
extent it occurs in practice.

RQ2 How many false positives does the automated detec-
tion yield?
The clone detection tool employed only searches for textual
similarity. It does not make certain that the detected clones
are relevant clones w. r. t. the above definition. To evaluate
the usefulness of automated specification clone detection in
practice, we need to analyze its precision.

RQ3 What kind of information is cloned in requirements
specifications?
To better understand specification cloning, we investigate
which parts of requirements specifications are cloned.

We use 11 requirements specifications with altogether 2,500
pages (title pages, document histories and generated ta-
bles of content excluded) as study objects. The specifi-
cations mostly describe business information systems, and
have been written by different teams of authors from sev-
eral different companies. For non-disclosure reasons, we
named the specifications A to K. Overview information on
the specifications is depicted in table 1.

3.2. Study design & procedure

For RQ1, we compute several cloning measures that are
also applied to quantify cloning on source code. We use the
approach described in Sec. 2 with a minimal clone length of
50 words1. Clone coverage denotes the part of a specifica-
tion that is covered by cloning. It can be interpreted as the
probability that an arbitrarily chosen specification sentence
is cloned at least once. Number of clone groups and clones
denotes how many different logical specification fragments
have been copied and how often they occur. The cardinality
of a clone group is the number of clones it contains.

For RQ2, detected clone groups are assessed manually
according to the above definition of relevant clone groups.
To keep manual effort within feasible bounds, assessment
for specification A was limited to a random sample of 25%
of the detected clone groups. All clone groups were rated
for the specifications B-K. From the assessment results, pre-
cision is determined as the ratio of the number of relevant
clone groups to the number of all rated clone groups.

For RQ3, we use a qualitative rather than quantitative ap-
proach. We manually inspect specification clones and ana-
lyze and classify their content. Inspection is limited to sam-
ples of the detected specification clones in order to reduce
manual effort.

3.3. Results & Discussion

RQ1 and RQ2. Results are depicted in table 1. Clone
coverage varies widely, from two specifications (E, J), in
which not a single clone of the required length was found,
to specification H containing nearly two thirds of duplicated
content, yielding an average of 14.9%. No correlation be-
tween size of the specification and cloning was found; spec-
ifications A and F even have more than one clone per page.
The average cardinality is 3.5, average precision of the de-
tection tool according to our manual assessment is 87%.

1This threshold was found to provide a good balance between precision
and recall during precursory experiments.

2



Table 1. Extent of specification cloning
spec. pages clone clone clones precision

cov. groups
A 517 23.9% 132 524 100%
B 1,013 1.6% 27 60 67%
C 133 15.1% 21 50 95%
D 241 3.4% 21 64 52%
E 185 0.0% 0 0 n/a
F 42 40.3% 24 79 96%
G 85 0.9% 1 2 100%
H 163 65.3% 20 101 100%
I 53 1.3% 1 2 100%
J 28 0.0% 0 0 n/a
K 39 12.1% 8 17 75%

With a minimum clone length of 20 instead of 50 words
(detailed results not shown), average clone coverage in-
creases to 26.1% (ranging from 2.7% to 76.1%). However,
average precision drops to 57%2.

RQ3. It appears from the results that most clones are in-
deed created through copy&paste and do not occur coinci-
dentally. The following further observations were made:

• Long clones: in several specifications, similar use
cases have been cloned entirely. Examples include
variations of one use case with country-specific dif-
ferences or creation and modification of certain data
items. The longest clone consists of nearly 6 consecu-
tive pages of identical text.

• Clone groups of high cardinality: parts of the system or
environment description occur very often in multiple
copies. An extreme case is a clone of 61 words that
occurs 41 times in specification A. A longer version
that contains 114 words occurs 13 times.

• Other frequent patterns: pre- and post conditions of-
ten appear identical or with slight variations in a large
number of use case descriptions.

Discussion. We conclude from these results that a consid-
erable amount of requirements cloning occurs in practice.
However, the fact that even some of the larger specifications
analyzed contain very few clones indicates that cloning can
be avoided. This seems logical, considering that natural lan-
guage allows any required abstraction, while programming
language limitations sometimes make code clones less eas-
ily avoidable. We find the precision of the automated anal-
ysis at minimal clone length 50 quite acceptable for practi-
cal use. Improvements should be possible in the—currently

2Determined on a random sample of 20 clone classes per specification.

very simple—preprocessing to reduce the number of false
positives with a length of less than 50 words, and to sub-
sequently extend the automated detection to smaller clones
without compromising precision.

3.4. Threats to Validity

In the presented study, we have not investigated false
negatives, i. e., the amount of duplication contained in a
specification not identified by the automatic detector. The
reason is the difficulty of clearly defining the characteris-
tics of such clones (having a semantical relation but little
syntactical commonality) as well as the effort required to
find them manually. The figures on detected clones are thus
only a lower bound. While the investigation of detection re-
call remains important future work, our limited knowledge
about it does not affect the validity of the detected clones.

The minimal clone length threshold can have a strong
impact on detection precision and recall. We chose a con-
servative minimal specification clone length of 50 words to
keep the false positive rate low. Smaller clones occur and
probably could be reliably detected with improvements in
preprocessing. This, however, does not invalidate the pre-
sented results for clone length 50. Precision rating for spec-
ification A was limited to a random sample of 25% of the
detected clones. While potentially less accurate, sampling
is commonly applied to keep rating effort feasible and has
been argued to produce reliable results [1].

Finally, our study only comprises 11 requirements spec-
ifications. Future work on additional requirements specifi-
cations would foster the generalizability of our results.

4. Consequences of specification cloning

Specification size increase. Requirements specifications
are read during various phases of software development,
e. g., inspection during early quality assurance, implementa-
tion and testing. The effort involved in reading a specifica-
tion depends, among other factors, on its size. Specification
cloning increases specification size, and thus the cost of the
software project, without adding value. The average blow
up, i. e., the size increase compared to a specification where
all cloning has been perfectly removed, is 16% for the ana-
lyzed specifications3. Size increase similarly impedes other
tasks, e. g., the reformatting or printing of the specifications.

Obliteration of commonalities and variation. Cloning
has another negative impact on readability. Readers can of-
ten benefit from being pointed to similarities between re-
quirements. In particular, developers who design and im-
plement the specified system will be eager to exploit them

3Please refer to the documentation at www.conqat.org for details
on the redundancy-free size computation algorithm.

3



in order to reuse code. For instance, the use cases for cre-
ating and modifying a data item (see 3.3) would probably
be based on the same GUI code. With identical content
repeated several times, readers are forced to compare the
clone instances and search for potential differences manu-
ally. They might easily overlook a hidden divergence and
wrongly assume that two requirements are identical.

Multiple modifications and probability of errors.
When information is duplicated in a specification, one sin-
gle requirements change might entail modifications in sev-
eral places of the specification, thus increasing modification
effort. Even worse, consistency of the requirements is jeop-
ardized, as modifications may be performed in some places
and forgotten in other parts. Both effects are well known
from code cloning [7].

5. Related Work

Requirements quality assessment. Cloning is a quality
aspect of requirements specifications. From our experience,
manual inspection (usually guided by a set of criteria such
as [5]) is the most common method for requirements quality
assessment in practice. As it requires human action, it does
introduce subjectiveness and causes high expenses. Various
metrics on text documents that can be calculated automati-
cally have been derived from linguistics (e. g., [13]). How-
ever, many of them are limited to the—grammatically rather
simple—English language. Specialized, structured repre-
sentations of requirements allow the calculation of more
specialized metrics [2]. They can, however, not be applied
in the frequent case of textual documents.

Similarity detection. Numerous approaches to software
clone detection have been proposed [8,10]. They have been
applied to source code [8, 10] and models [4]. Substantial
investigation of the consequences of cloning has established
its negative impact on maintenance activities [7, 8, 10]. To
the best of our knowledge, this work is the first to report on
requirements specification cloning.

Algorithms for similarity detection in documents have
been developed in several other fields of research, though.
Clustering algorithms for document retrieval, such as [12],
search for documents about issues similar to those of a refer-
ence document. However, the criteria are broader than those
for clone detection: instead of cloned text, they require sim-
ilar occurrence of thematic keywords. Plagiarism detection
algorithms, like [3, 9], have similar criteria as clone detec-
tion but a different starting point: they search for clones be-
tween one given document and a very large set of other doc-
uments, while we consider clones within a document and
optionally a few neighboring documents.

6. Conclusion

We have shown in this paper that a considerable degree
of cloning exists in real-world requirements specifications
and how clones can be detected efficiently using an exist-
ing tool. Future research will be dedicated to improving
precision and recall of automated detection and to quantify-
ing the actual impact of requirements cloning on a software
project. From our inspections, we suspect that cloning often
stems from insufficient abstraction skills on the part of the
authors, a misunderstanding of concepts such as use cases
and overly strict adherence to templates. We therefore con-
sider high clone rates, beside the cost increase they cause,
an important warning signal on requirements quality.

Acknowledgments The authors want to thank F. Deis-
senboeck, B. Hummel, D. Méndez Fernández, B. Penzen-
stadler, S. Wagner and B. Schaetz for helpful comments.

References
[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.

Comparison and evaluation of clone detection tools. IEEE
Trans. Softw. Eng., 33(9):577–591, 2007.

[2] B. Bernárdez, A. Durán, and M. Genero. Empirical evalu-
ation and review of a metrics-based approach for use case
verification. Journal of Research and Practice in Informa-
tion Technology, 36(4):247–258, 2004.

[3] F. Culwin and T. Lancaster. A review of electronic services
for plagiarism detection in student submissions. In 8th An-
nual Conf. on the Teaching of Computing, 2000.

[4] F. Deissenboeck, B. Hummel, E. Juergens, B. Schaetz,
S. Wagner, J.-F. Girard, and S. Teuchert. Clone detection
in automotive model-based development. In ICSE’08, 2008.

[5] IEEE. Recommended practice for software requirements
specifications. Standard 830-1993, IEEE, 1993.

[6] E. Juergens, F. Deissenboeck, and B. Hummel. Clonedetec-
tive – a workbench for clone detection research. In ICSE’09,
2009.

[7] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do code clones matter? In ICSE’09, 2009.

[8] R. Koschke. Survey of research on software clones. In Du-
plication, Redundancy, and Similarity in Software, 2006.

[9] C. Lyon, R. Barrett, and J. Malcolm. A theoretical basis to
the automated detection of copying between texts, and its
practical implementation in the ferret plagiarism and collu-
sion detector. In Plagiarism: Prevention, Practice and Poli-
cies Conference, 2004.

[10] C. K. Roy and J. R. Cordy. A survey on software clone
detection research. Technical Report 2007-541, School of
Computing Queen’s University, Kingston, Canada, 2007.

[11] M. Weber and J. Weisbrod. Requirements engineering in
automotive development – experiences and challenges. In
Int. Conf. on Requirements Engineering, 2002.

[12] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user
queries of a search engine. In Intl. conf. on WWW, 2001.

[13] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Automated
analysis of requirement specifications. In ICSE’97, 1997.

4


