The Quamoco Product Quality Modelling and Assessment Approach

Stefan Wagner*, Klaus Lochmann†, Lars Heinemann†, Michael Kläs‡, Adam Trendowicz‡, Reinhold Plösch§, Andreas Seidl¶, Andreas Goeb‖, and Jonathan Streit**

*Inst. of Software Technology, University of Stuttgart, Stuttgart, Germany, stefan.wagner@informatik.uni-stuttgart.de
†Institut für Informatik, Technische Universität München, Garching, Germany, lohmann,heineman@in.tum.de
‡Fraunhofer IESE, Kaiserslautern, Germany, michael.klaes,adam.trendowicz@iese.fraunhofer.de
§Department of Business Informatics, Johannes Kepler University Linz, Linz, Austria, reinhold.ploesch@jku.at
¶CSD Research, Capgemini, Munich, Germany, andreas.seidl@capgemini.com
‖SAP Research, SAP AG, Darmstadt, Germany, andreas.goeb@sap.com
**itestra GmbH, Munich, Germany, streit@itestra.com

Abstract—Published software quality models either provide abstract quality attributes or concrete quality assessments. There are no models that seamlessly integrate both aspects. In the project Quamoco, we built a comprehensive approach with the aim to close this gap.

For this, we developed in several iterations a meta quality model specifying general concepts, a quality base model covering the most important quality factors and a quality assessment approach. The meta model introduces the new concept of a product factor, which bridges the gap between concrete measurements and abstract quality aspects. Product factors have measures and instruments to operationalise quality by measurements from manual inspection and tool analysis. The base model uses the ISO 25010 quality attributes, which we refine by 200 factors and 600 measures for Java and C# systems.

We found in several empirical validations that the assessment results fit to the expectations of experts for the corresponding systems. The empirical analyses also showed that several of the correlations are statistically significant and that the maintainability part of the base model has the highest correlation, which fits to the fact that this part is the most comprehensive. Although we still see room for extending and improving the base model, it shows a high correspondence with expert opinions and hence is able to form the basis for repeatable and understandable quality assessments in practice.

Keywords—quality model; quality assessment; meta model; empirical validation

I. INTRODUCTION

Despite great efforts in both research and practice, software quality continues to be a controversial and insufficiently understood issue and the quality of software products is often unsatisfactory. Economical impacts are enormous and include not only spectacular failures of software but also increased maintenance costs, resource consumption, long test cycles and user waiting times.

A. Quality Models – Benefits and Shortcomings

Software quality models (QMs) tackle these issues by providing a systematic approach for modelling quality requirements, analysing and monitoring quality and directing quality improvement measures [1]. They thus allow to ensure quality early in the development process.

In practice, however, a gap remains between two different types of QMs: Models of the first type, e.g. ISO 25010, describe and structure general concepts that constitute high quality software. Most of them, however, lack the ability to be used for actual quality assessment or improvement. The second kind of quality models is tailored for specific domains, certain architectural paradigms (e.g. SOA) or single aspects of software quality (e.g. reusability). They allow concrete assessments but often miss the connection to higher level quality goals. Thus they make it difficult to explain the importance of quality problems to developers or sponsors and to quantify the economic potential of quality improvements. Because these specific models usually do not cover the full spectrum of software quality, they impede the proliferation of a common understanding of software quality in the software industry.

A similar gap also exists for quality assessment methods. Effective quality management requires not only a definition of quality and the measurement of individual properties but also a method for assessing the overall quality of a software product based on the measured properties. Existing quality models either miss such assessment support completely or provide procedures that are too abstract to be operational (e.g. ISO 25040) or not based on a solid theoretical basis (e.g. [2]). In consequence, quality assessment is inhibited and likely to produce inconsistent and misleading results; in particular if the required assessment expertise is missing.

B. Research Objective

Our aim is a quality model for software that is both widely applicable and highly operationalised to provide the missing connections between generic descriptions of software quality attributes and specific software analysis approaches. The required operationalisation implies the integration of existing domain- and language-specific tools, manual analyses and a soundly defined assessment method.
To achieve this goal, software quality experts from both academia and industry in Germany joined forces within the Quamoco research project. The project consortium consists of Technische Universität München, SAP, Siemens, Capgemini, Fraunhofer IESE and itestra. In total, these partners spent 538 person months on the project.

C. Contribution

Our work provides four major contributions: First, we developed a meta model for software quality, which covers the full spectrum from structuring quality-related concepts to defining operational means to assess their fulfillment in a specific environment. Second, for the actual quality assessment we contribute a clearly defined assessment method that integrates with the meta model. Third, the base quality model instantiates the meta model and captures knowledge on how to conduct a basic quality assessment for different kinds of software. At present, we have elaborated the base model in depth for the languages Java and C#. Fourth, we performed an initial validation of the model with real software systems, which showed the correspondence of the assessment results with expert opinions.

II. RELATED WORK

Quality models have been a research topic for several decades and a large number of quality models has been proposed [3]. The first work dates back to the late 1970s, when Boehm et al. described quality characteristics and their decomposition [4]. The 1980s saw the first need for custom quality models and the first tool support. Until then, the quality models simply decomposed the concept "quality" in more tangible quality attributes. In the 1990s more elaborate ways of decomposing quality attributes were introduced by distinguishing between product components, which exhibit quality carrying properties and externally visible quality attributes [5]. Later, Kitchenham et al. [6] acknowledged the need for an explicit meta model for quality models.

Based on the early quality models, the standard ISO 9126 was defined in 1991. As shown by various critiques (e.g. [7], [8]) the used decomposition principles for quality attributes are often ambiguous. Furthermore, the resulting quality attributes are not specific enough to be directly measurable. Although the recently published successor ISO 25010 has several improvements, the overall critique is still valid. Our survey [9], [10] shows that less than 28% of the companies use these standard models and 71% of them have developed their own QMs. Another weakness of these quality models is that they do not specify how the quality attributes should be measured and how measurement results can be aggregated to achieve an overall quality assessment for a system.

Although not embedded in an operationalised quality model, a large number of tools for quality analysis are available: bug pattern identification (e.g. FindBugs, Gendarme, PC-Lint), coding convention checkers (e.g. Checkstyle), clone detection tools and architecture dependency/cycle analysis tools. These tools focus on specific aspects of software quality and fail to provide comprehensive quality assessments. Moreover, they are not explicitly and systematically linked to a quality model.

One can use the measurement data generated by these tools as input for dashboard tools (e.g. QALab, Sonar and XRadar). Their goal is to present an overview of the quality data of a software system. Nevertheless, they also lack an explicit connection between the metrics used and the required quality attributes. This results in a missing explanation of the impacts of found defects on software quality and in missing rationales for the used metrics.

A comprehensive approach is taken by the research project Squale [11]. They develop an explicit quality model describing a hierarchical decomposition of the ISO 9126 quality attributes. The model contains formulas to aggregate and normalise metric values. Regarding the quality model, the main difference to our approach is that the model of Quamoco uses a product model to structure the quality factors. Based on the quality model, they provide tool support for evaluating software products. The measures and the quality model are fixed within these tools. In contrast, Quamoco offers an editor to create and manage quality models and the Quamoco tool chain allows for a flexible configuration and integration of measurement tools and even manually collected data.

In our prior work, we have investigated different ways of describing quality and classifying metrics, e.g. activity-based quality models [7] and technical issue classifications [12]. Based on this work, we developed a meta model for quality models and evaluated it regarding expressiveness [13]. Regarding quality assessments and tool support for it, we experimented with different approaches [14]–[16]. Based on the gained experience, we developed our tool-support [17]. This paper describes the complete approach and an empirical validation.

III. QUALITY MODEL CONCEPTS

The first challenge to address the gap between abstract quality attributes and concrete assessments is to formalise general concepts for quality models by a suitable meta quality model. After we describe how we use quality models, we explain each of the concepts briefly and reference which problems they solve. Finally, we combine the concepts into a meta model to show the complete picture. These concepts and the meta model have been developed in three iterations over three years with corresponding evaluations [13].

A. Usage of the Quality Models

Most commonly, we find quality models reduced to just reference taxonomies or implicitly implemented in tools. As explicit and living artefacts, however, they can capture general knowledge about software quality, accumulate
knowledge from applying them in projects and allow to define a common understanding of quality in a specific context [7], [18]–[20].

We aim to use this knowledge as basis for quality control. In the control loop, the quality model is the central element for identifying quality goals, assessing these goals, analysing defects and reworking the software product based on the analysis results. The quality model is useful to define what we need to measure and how we can interpret it to understand the state of quality of a specific product. A single source of quality information avoids redundancies and inconsistencies in diverse quality specifications and guidelines.

On top of that, the model itself helps us to establish suitable and concrete quality requirements. The quality model contains quality knowledge that we need to tailor for the product to be developed. This includes removing unneeded qualities as well as adding new or specific qualities.

B. General Concepts

The previous work of all Quamoco partners on quality models, our joint discussions and experiences with earlier versions of the meta model brought us back to the basic concept of a factor. A factor expresses a property of an entity, which is similar to what Dromey [5] called quality carrying properties of product components. We describe with entities the things that are important for quality and with properties the attributes of the things we are interested in. Because this concept of a factor is rather general, we can use it on different levels of abstraction. We have concrete factors such as the cohesion of classes as well as abstract factors such as the portability of the product.

To clearly describe quality from an abstract level down to concrete measurements, we explicitly distinguish between the two factor types quality aspects and product factors. Both can be refined to sub-aspects and sub-factors. The quality aspects express abstract quality goals, for example, the quality attributes of the ISO 9126 and ISO 25010, which always have the complete product as their entity. The product factors are measurable attributes of parts of the product. We require that the leaf product factors are concrete enough, so we can measure them. An example is the duplication of source code, which we measure with clone coverage. This clear separation helps us to bridge the gap between the abstract notions of quality and concrete implementations.

Moreover, we are able to model several different hierarchies of quality aspects to express different views on quality. Quality has so many different facets that a single quality attribute hierarchy is not able to express it. Even in the recent ISO 25010, there are two quality hierarchies: Product quality and quality in use. We can model both as quality aspect hierarchies. Also other types of quality aspects are possible. We experimented with our own earlier work: activity-based quality models [7] (similar to quality in use of ISO 25010) and technical classifications [21]. We found that this gives us the flexibility to build quality models tailored for different stakeholders.

To completely close the gap between abstract quality attributes and assessments, we need to set the two factor types into relation. The product factors have impacts on quality aspects. This is similar to variation factors, which have impacts on quality factors in GQM abstraction sheets [22]. An impact is positive or negative and describes how the degree of presence or absence of a product factor influences a quality aspect. This gives us a complete chain from measured product factors to impacted quality aspects and vice versa.

We need product factors concrete enough to be measured so that we can close the abstraction gap. Hence, we have the concept of measures for product factors. A measure is a concrete description how a specific product factor should be quantified for a specific context. For example, this can be counting the number of violations of the rule for Java that strings should not be compared by “==”. A factor can have more than one measure if we need separate measures to cover the concept of the product factor. Moreover, we separate the measures from their instruments. The instruments describe a concrete implementation of a measure. For the example of the string comparison, an instrument is the corresponding rule as implemented in the static analysis tool FindBugs. This gives us additional flexibility to collect data for measures manually or with different tools in different contexts. Overall, the concept of a measure also contributes to closing the gap between abstract qualities and concrete software as it is possible to trace down from the quality aspects over product factors to measures and instruments.

With all these relationships with measures and instruments, it is possible to assign evaluations to factors so that we can aggregate from measurement results (provided by instruments) to a complete quality assessment. There are different possibilities to implement that. We will describe a quality assessment method using these concepts later in Section V. Moreover, we can go the other way round. We can pick quality aspects, for example, ISO 25010 quality attributes, which we consider important and costly for a specific software system and trace down to what product factors affect it and what are measures for that (cf. [15]). This way, we can concentrate on the product factors with the largest impact on these quality aspects. It gives us also the basis for specifying quality requirements, for which we developed an explicit quality requirements method [23], [24].

Building quality models in such detail results in large models with hundreds of model elements. Not all elements are important in each context and it is impractical to build a single quality model that contains all measures for all relevant technologies. Therefore, we introduced a modularisation concept, which allows us to split the quality model
into modules. For that we have the root module, which contains general quality aspect hierarchies as well as basic product factors and measures. In additional modules, we extend the root module for specific technologies, such as object-orientation, programming languages, such as C#, and domains, such as embedded systems.

The modules enable us to choose appropriate modules and extend the quality model by additional modules for a given context. To adapt the quality model for a specific company or project, however, this is still too coarse grained. Hence, we also developed an explicit adaptation method, which guides a quality manager in choosing relevant quality aspects, product factors and measures for the current project [25].

C. Meta Model

To precisely specify the general concepts described so far, we modelled them in a meta model. The core elements of the meta model are depicted as an (abstracted) UML class diagram in Figure 1. Please note that we left out a lot of details such as the IDs, names and descriptions of each element to make it more comprehensible. At the centre of the meta model resides the Factor with its specialisations Quality Aspect and Product Factor. Both can be refined and, hence, produce separate directed acyclic graphs. An Impact can only go from a Product Factor to a Quality Aspect. This represents our main relationship between factors and hence allows us to specify the core quality concepts.

The Factor always has an associated Entity, which can be in a is-a as well as a part-of hierarchy. For example, in an object-oriented language, a method is part of a class and is a kind of source code. The property the Factor describes of an Entity is expressed in the Factor’s name. Each factor has also an associated Evaluation. It specifies how to evaluate or assess the Factor. For that we can use the evaluation results from sub-factors or – in the case of a Product Factor – the values of associated Measures. A Measure can be associated to more than one Product Factor and has potentially several instruments that allow us to collect a value for the measure in different contexts, e.g. with a manual inspection or a static analysis tool.

We modelled this meta model with all details as an EMF [1].

IV. Base Model

Our main objective for the base model is to describe software quality in a way that allows tool-supported quality assessment and is applicable to a wide range of software products. To reach this goal, software quality experts from both academia and industry conducted a series of workshops over three years to collaboratively transfer their knowledge and experience into the structure described in section III. The workshops covered the whole spectrum from full consortial meetings to small, specialised teams creating and extending single modules. The resulting QM represents our consolidated view on the quality of software source code and is generally applicable to any kind of software. By providing in-depth modelling, including particular analysis tools as instruments for the assessment of Java and C# systems, it allows for comprehensive, tool-supported quality assessment without requiring large adaptation or configuration effort. Because this model constitutes the basis for further specialisation and adaptation, we call it the base model.

A. Contents

The Quamoco base model is a comprehensive selection of factors and measures relevant for software quality assessment. In total, it comprises 112 entities and 286 factors. Since some factors are used for structuring purposes rather than quality assessment, only 221 factors have evaluations assigned. Of these, 202 factors define impacts on other factors, leading to a total of 492 impacts. Since the model provides operationalisation for different programming languages (cf. Section IV-B), it contains considerably more measures than factors: In total, there are 194 measured factors and 526 measures in the model. For these measures, the model contains 542 instruments, which split up into 8 manual ones and 536 that are provided by one of 12 different tools. The tools most relied on are FindBugs (Java, 361 rules modelled) and Gendarme (C#, 146 rules). Other tools integrated into our model include PMD (Java, 4 rules) and several clone detection, size, and comment analyses that are part of the quality assessment framework.

In the following, we present example factors including their respective measures and impacts to illustrate the structure of the base model.

1) Rules of Static Code Analysis Tools: As described above, the largest fraction of measures refers to static code analysis tools. One example is the FindBugs rule FE_TEST_IF_EQUAL_TO_NOT_A_NUMBER, which scans Java code for equality checks of floating point values with the Double.NaN constant. The Java language semantics defines that nothing ever equals to NaN, not even NaN itself, so that \(x == \text{Double.NaN} \) is always false. To check whether a value is not a number, the programmer has to

call `Double.isNaN(x)`. This rule is an instrument to the Doomed test for equality to NaN measure, which measures the factor General Expression Applicability for comparison expressions, along with a couple of other measures. This factor in turn influences both Functional Correctness and Analysability.

2) Established Generic Factors: Rule-based code analysis tools cannot detect every kind of quality problems. Therefore, the base model also contains product factors based on established research results, metrics and best-practices. Identifiers have been found to be essential for the understandability of source code. Whether identifiers are used in a concise and consistent manner can only partly be assessed automatically [26]. Therefore, the factor Conformity to Naming Convention for source code identifiers contains both automatic checks performed by several tools and manual instruments to assess whether identifiers are used in a consistent and meaningful way. Another established factor related to software quality is code cloning. Source code that contains large amounts of clones was shown to be hard to understand and maintain [27]. The concept of code cloning is represented in the factor Duplication of Source Code, which has negative impacts on both analysability and modifiability. It is measured by clone coverage as well as cloning overhead.

B. Modularisation

According to the modularisation concept introduced in Section [III] the base model is structured into several modules. In the base model, a module root contains the definitions of quality aspects. For each programming language in the quality model an own module was introduced. For object-oriented programming languages (Java, C#) an intermediate module object-oriented defines usual concepts of object-oriented programming languages such as classes or inheritance.

We used the modularisation concept to integrate individual analysis tools for the programming languages. In the module object-oriented, we defined a large number of general metrics without connections to concrete tools (e.g. number of classes). The module for Java defines a tool for measuring the number of classes in Java systems. This way, we support a separation between general known concepts and specific instruments.

The explicit definition of modules provides several benefits to us: First, it enables us to separately and independently work on modules for different technologies and domains. Second, it allows us to explicitly model the commonalities and differences between several programming languages. This is visible in the reuse of factors of the module object-oriented in the modules Java and C#: The common module defines 64 factors, Java adds only 1 and C# only 8 language-specific factors.

We also used the modularisation concept to connect domain-specific quality models with the root model. The industry partners defined their own models for their domain. For example, iestra defined a model for information systems. It extends the root model and adds factors describing quality characteristics of database schemas and tables.

V. QUALITY ASSESSMENT APPROACH

A QM specifies quality in terms of relevant properties of software artefacts and associated measures. Yet, to support assessing product quality the QM needs to be associated with an approach to synthesise and interpret the measurement data collected for the product. In this section, we specify a quality assessment method applicable for Quamoco QMs.

A. Practical Challenges

In practice, there are a number of specific challenges that quality assessment must address in addition to the challenges of quality modelling. To identify these challenges and to determine how existing quality assessment methods address them, we performed a systematic literature review and a survey among members of the Quamoco consortium. Details on the design, execution and results of that survey are beyond the scope of this paper and will be published separately.

Among the most important requirements were that a software quality assessment should be comprehensible to software decision makers, combines quality preferences of different groups of stakeholders, copes with incomplete information and allows for mutual compensation between multiple (potentially contradictory) quality aspects. We observed that the structure of the quality assessment problem corresponds to the problems addressed by Multicriteria Decision Analysis (MCDA) [28]. As a result of a literature review we decided to adapt principles of Multiple-Attribute Utility/Value Theory (MAUT/MAVT) [28], as it meets most of the requirements and can be easily adjusted to meet all the requirements.

B. Quality Assessment Method

The Quamoco quality assessment method models the preferences of decision makers for a product’s quality using the concept of utility. Utility quantifies the relative satisfaction of a decision maker concerning the quality of a software product characterised by specific measurable factors.

While measures provide objective values without preferences, the utility defines the quality preferences of a decision maker in that for any two products the one with higher utility is preferred. For example, for the purpose of assessing software maintainability we may consider the factor density of comments in the software source code, measured as the percentage of comment lines in the complete source code. The utility of this factor would not be monotonic. From the perspective of maintaining software code, we would prefer
more code comments only up to a certain threshold (utility increases with increasing comment density) and drop after exceeding this threshold (utility decreases with increasing comment density). For each measurable factor, we can define a different mapping between the factor measurements and corresponding utilities using a utility function. In case of multiple factors, the total product utility is a synthesis of the utilities of all individual factors. Within the hierarchical structure of the base model, the utility function defines a mapping between the factor’s measurement values and its utility. At higher levels of the QM hierarchy, the utility of a factor results from a synthesis of the utilities assigned to all its direct sub-factors.

Figure 2 shows the quality assessment activities within the hierarchical structure of the base model. On the left side of the figure, there are key activities and outputs needed for operationalising the model to perform assessments. These activities and their outputs correspond to the generic process of MCDA (e.g. [29]). Analogically, on the right side of the figure, there are the corresponding activities performed during the assessment of a specific product and their outputs. Subsequently, we discuss the objective and concrete procedure applied for each activity couple when we operationalise and apply the base model for quality assessments.

1) Defining Measures / Measurement: During the operationalisation, we have to associate measures for all input data needed for the quality assessment with appropriate measurement instruments. Each measure was reviewed by two measurement experts to decide on an appropriate normalisation measure based on a defined set of rules. For instance, base measure M_1: Doomed test for equality to NaN is normalised by base measure M_2: Lines of code into derived measure M_4, through which measurements of M_1 become comparable between software systems of different sizes. The measures quantify the lowest-level factors in the QM hierarchy. During the application, objective measurement data are collected. For example, for the source code of the Java Platform, version 6, we obtain $M_1 = 6$, $M_2 = 2,759,369$, and consequently $M_4 = 2.17 \cdot 10^{-6}$. To cope with incomplete measurement data, the approach uses interval arithmetic to determine the range of possible outcomes for factors.

2) Defining Utility Functions / Scoring: During the operationalisation, we defined a utility function for each measure of a factor at the lowest level of the hierarchical QM. These functions define the utility each measure has in the context of the factor it is associated to. The factor’s utility is then defined as the weighted sum of the utilities of all measures connected to the factor. To assure the understandability of the evaluation, we used only simple linear increasing and decreasing functions with two thresholds min and max that determine when the factor is associated with the minimal (0) and maximal utility (1). After experts decided on the type of function (decreasing or increasing), we determine the thresholds for the function using Equation 1 on the normalised measurement values for a set of at least 10 baseline systems. For the Java specific-part, we used, for instance, data from a sample of 110 open source software systems.

$$\text{IF } |\{s_{i=1\ldots n} : s_i > 0\}| < 5 \text{ THEN}$$
$$\text{min} = 0, \text{max} = 0.00000001$$
$$\text{ELSE}$$
$$\text{max} = \max \left\{ s_i : s_i \leq Q3(\{s_i : s_i \neq 0\}) + 1.5 \cdot IQR(\{s_i\}) \right\}$$
$$\text{min} = \min \left\{ s_i : s_i \geq Q1(\{s_i : s_i \neq 0\}) - 1.5 \cdot IQR(\{s_i\}) \right\}$$
$$\text{END}$$

where $s_i = S(F_x)$ for baseline system i and where $Q1$ and $Q3$ represent the 25% and 75% percentiles. $IQR = Q3 - Q1$ represents the inter quartile range.

The equation assures that for measures with a limited number of data points different from zero a simple jump function at 0 is defined. Else, the minimum and maximum non-outlier values are used as thresholds. For example, we obtained for M_4: $\text{min} = 0, \text{max} = 8.5 \cdot 10^{-6}$. Two measurement experts reviewed the automatically determined thresholds for each measure together with supporting descriptive statistics for plausibility. During the application, we calculated the defined evaluation function on the measurement data of the assessed system. This operation involves evaluating the utility of a factor at the lowest level of the QM. For the Java Platform, version 6, we obtain, for instance, $U(M_4) = \text{Eval}(M_4) = 0.74$

3) Defining Factor Weights & Aggregation Operator / Aggregation: During operationalisation, the relative importance of adjacent elements of the QM has to be specified, where
elements include factors and measures directly associated to lowest-level factors. We extracted the relative importance of quality aspects from the results of our survey [10]. For other relationships, mixed teams consisting of industrial and academic experts determined the relative importance. Weights for adjacent elements must be between 0 and 1 and sum up to 1. To support the efficient definition of weights, we used the Rank-Order Centroid method [30] to calculate the weights of each factor automatically based on a relevance ranking between sibling factors provided by the teams using the Swing approach [31].

In our case, M_4 was rated as less important for $F_{1.1}$ (General expression applicability of comparison expressions) than the second measure M_5: Floating point equality and, therefore, obtained the weight $w_{M_4} = 0.25$. During the model application, we use the weights within the bottom-up synthesis of factor utilities along the hierarchy of the QM. For this purpose, we define an appropriate aggregation operator. We use a weighted sum operator as an easily understandable and relatively reliable aggregation approach. For instance, we obtain for $U(F_{1.1}) = w_{M_4} \cdot U(M_4) + w_{M_5} \cdot U(M_5) = 0.25 \cdot 0.74 + 0.75 \cdot 0.89 = 0.85$ and for F_1 (functional correctness) $U(F_1) = w_{F_{1.1}} \cdot U(F_{1.1}) + w_{F_{1.2}} \cdot U(F_{1.2}) = 0.02 \cdot 0.85 + ... = 0.82$.

4) Defining / Applying Interpretation Models: These activities support the decision maker in interpreting the factor’s utility, for example if it is good or bad. The objective of interpretation is to map the ratio-scale utility, for instance, onto a more intuitive, ordinal scale such as school grades or traffic lights.

VI. TOOL SUPPORT

The base model was designed in a way that it can be used as provided without any modifications for any software project, regardless of the application domain. Thus, the model as well as the assessment method is ready to use and can be applied with minimal effort on a project.

Additionally, the Quamoco project contributes an integrated tool chain for both quality modelling and assessment [17], available from the Quamoco website [https://quamoco.in.tum.de/wordpress/?page_id=767&lang=en]. The tooling consists of the quality model editor and the quality assessment engine which we describe in the following.

A. Quality Model Editor

The quality model editor is built on the Eclipse Platform and the Eclipse Modeling Framework. It allows modellers to edit QMs conforming to the Quamoco meta quality model. According to the modularisation concept (cf. Section IV-B), each module of a QM is stored in a separate file. This enables concurrent work on a QM by multiple users. The content of the model can be navigated by different tree views that allow form-based editing of the attributes of model elements.

Validation during editing helps the modeller to create models adhering to meta model constraints, consistency rules and modelling best practices. A simple validation rule checks for unreferenced model elements. A more sophisticated rule ensures that for model elements referenced in other quality modules an appropriate requires dependency between the modules is defined. The editor employs the Eclipse marker mechanism for displaying error and warning messages in a list and provides navigation to affected elements. The user is further assisted by an online help feature that displays context-sensitive help content depending on the current selection in the editor. The help texts explain the concepts of the meta quality model and contain a guideline with best practices for quality modelling.

B. Quality Assessment Engine

The quality assessment engine is built on top of the quality assessment toolkit ConQAT [http://www.conqat.org/] which allows to create quality dashboards integrating diverse quality metrics and state-of-the-art static code analysis tools.

The connection between the quality modelling and the assessment is achieved by an automated generation of a ConQAT analysis configuration from a QM. For the assessment of a software system, the quality assessment engine is provided with the QM, the code of the software system to assess, the generated ConQAT configuration and, optionally, manual assessment results stored in an Excel file. This allows the assessor to extend the tooling with custom analyses needed for the evaluation of an own QM.

The assessment result can be inspected within the editor in the hierarchy of the QM. Moreover, a treemap visualisation of the results allows to track down quality issues from abstract quality characteristics to concrete measures. Finally, an HTML report allows to inspect the results of an assessment from within a browser, thus not requiring the tooling and the QM. The quality assessment engine can also run in batch mode, which enables the integration in a continuous integration environment. Thereby, a decay in quality can be detected early.

VII. EMPIRICAL VALIDATION

We validate the quality assessments grounded on the base model using two research questions:

RQ 1: Can the base model be used to detect quality differences between different systems or subsystems?

RQ 2: Can the base model be used to detect quality improvements over time in a software system?

A. Comparison of Software Products and Subsystems

To answer RQ 1, we have to evaluate whether the base model provides valid assessment results, meaning that the assessment results are in concordance with the results obtained by another independent and valid approach for assessing
product quality. We check RQ 1 for (a) products and (b) subsystems, because in practice these are the two most important applications for quality assessments: compare products with respect to quality and identify parts of a system that need further quality improvement.

Design: To evaluate the validity of the quality assessments, we need an independently obtained criterion for product quality that we can compare with our assessment results. Since no measurement data were available that directly measure the quality or the quality aspects of interest for a set of products or subsystems that we can assess using the base model, we utilised as the independent criterion expert-based quality judgments. (a) For the comparison of different software products, we used the rating provided in the Linzer Software-Verkostung [32] for a set of five open source products. The rating provided is a ranking of the five systems based on a combination of ratings provided independently by nine experienced Java experts. (b) For the comparison of different subsystems of one product, we used five subsystems of a business software system developed by one of the industry partners and a ranking provided by an expert from the company familiar with the five assessed subsystems.

To measure validity and ensure comparability with other studies, we make use of the validity criteria proposed in the IEEE standard 1061 for validating software quality metrics. The standard proposes a set of criteria but most of them assume that the collected measures and the independent criterion both use an interval or ratio scale. In our case, the results of the base model assessments are provided as a value characterising the product quality between 1 (best possible) and 6 (worst possible) and the assessment results of the expert judgements provided on an ordinal scale as a ranking from best (1) to worst (5) product or subsystem, respectively. Consequently, we had to limit our investigation to the validity criterion consistency (cf. IEEE 1061), which can be applied on ordinal scale data. It characterises in our case the concordance between a product ranking based on the assessments provided by our model and the ranking provided independently by (a) a group of experts / (b) an expert. This means that we determine whether the base model can accurately rank the set of assessed products / subsystems with respect to their quality (as perceived by experts).

Following the suggestion of IEEE 1061, we measure consistency by computing the Spearman’s rank correlation coefficient (r) between both rankings, where a high positive correlation means high consistency between the two rankings. Since we want to check whether a potentially observed positive correlation is just due to chance or is a result of using an appropriate quality model, we state the hypotheses H_{1A} and H_{2A} (and corresponding null hypotheses H_{1o} and H_{2o}). We test both with the confidence level 0.95 ($\alpha = 0.05$): H_{1A}: There is a positive correlation between the ranking of the systems provided by the base model (BM) and the ranking of the systems provided by the experts during the Linzer Software-Verkostung (LSV).

H_{2A}: There is a positive correlation between the ranking of the subsystems provided by the base model (BM) and the ranking of the subsystems provided by the company expert (Exp).

$$H_{1A} : r(\text{rankingBM}, \text{rankingLSV}) > 0$$
$$\text{i.e., } H_{1o} : r(\text{rankingBM}, \text{rankingLSV}) \leq 0$$
$$H_{2A} : r(\text{rankingBM}, \text{rankingExp}) > 0$$
$$\text{i.e., } H_{2o} : r(\text{rankingBM}, \text{rankingExp}) \leq 0$$

Execution: (a) During the study, we used the base model to assess the quality of five open source products for which independent expert-based assessment results of the Linzer Software-Verkostung were available: JabRef, TV-Browser, RSSOwl, Log4j and Checkstyle. We ordered the assessed products by the results for their overall quality provided by the base model and compared them with the ranking provided by the Linzer Software-Verkostung. (b) Moreover, we employed the base model to assess the overall quality and maintainability of the five selected subsystems of a business software developed by one of the industry partners. Based on these values, we ranked the subsystems with respect to maintainability and the overall quality. Independent of this, we interviewed an expert in the company and asked him to rank the subsystems with respect to maintainability and overall quality. When he could not decide on the order of two subsystems, he provided the same rank for the two subsystems. In both studies, we followed a cross-validation approach (i.e., none of the assessed systems / subsystems were part of the set of systems used to calibrate the base model).

Results: Table I shows the assessment results using the base model and the resulting product ranking as well as the ranking of the Linzer Software-Verkostung. The calculated Spearman’s rho correlation is $r = 0.975$, which is close to a perfect correlation of 1. Hypothesis H_{1A} can also be accepted on a high level of significance ($p=0.002$) meaning that there is a significant positive correlation between the ranking provided by the base model and the ranking provided by the Linzer Software-Verkostung.

Table I
Comparison of the Assessment Results and the Results of “Linzer Software-Verkostung”

<table>
<thead>
<tr>
<th>Product</th>
<th>LOC</th>
<th>Result BM</th>
<th>Rank BM</th>
<th>Rank LSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkstyle</td>
<td>57,213</td>
<td>1 (1.87)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RSSOwl</td>
<td>82,258</td>
<td>3 (3.14)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Log4j</td>
<td>30,676</td>
<td>3 (3.36)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TV-Browser</td>
<td>125,874</td>
<td>4 (4.02)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>JabRef</td>
<td>96,749</td>
<td>5 (5.47)</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
The assessment results for the subsystems are shown in Table II. The calculated Spearman’s rho correlation for the overall quality is \(r = 0.32 \), which is a positive but only moderate correlation. Hypothesis \(H_2A \) cannot be accepted (\(p=0.30 \)) meaning that we cannot show the statistical significance of the observed positive correlation. The agreement between the expert and the base model results is higher (\(r = 0.67 \)) when considering maintainability, but also not statistically significant (\(p=0.11 \)).

Table II
COMPARISON OF THE ASSESSMENT RESULTS OF FIVE SUBSYSTEMS AND AN EXPERT’S OPINION

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Rank Exp Quality</th>
<th>Rank Exp Maint.</th>
<th>Rank BM Quality</th>
<th>Rank BM Maint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsystem A</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Subsystem B</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Subsystem C</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Subsystem D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subsystem E</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Interpretation:

(a) The assessments of the overall product quality for the five investigated systems turn out to be consistent and thus valid when compared to an independent criterion for quality, in this case provided in the form of an expert-based assessment. Although this conclusion is supported by a very high and statistically significant correlation, there are some threats to validity that need to be considered.

(b) For the investigated subsystems, the results are not that clear. The study hints that the Quamoco base model is useful to identify – or at least narrow down – the list of subsystems that need further quality improvement. However, since the correlation is only moderate, a larger sample of subsystems would be needed to draw statistical significant conclusions.

Threats to Validity: The most relevant threats we see are (1) we cannot guarantee that the criterion chosen for the validation, namely the expert-based quality rating, adequately represents the quality of the products/subsystems, this is especially relevant for the rating of the subsystems where only one expert rating was available. (2) The generalizability of our results is limited by the fact that the scope of the empirical validation is limited to five medium sized Open Source systems and five subsystems of one industrial software system written in Java.

B. Making Quality Improvements Visible

In a second study we knew from the quality experts of the project that they had invested effort in enhancing the maintainability of the system. In this study from the automation domain (steel production) we analysed six versions of a Java software using our base model. The major goal was to validate, whether our base model would reflect the assumed quality improvements claimed by the quality managers (RQ 2). It is important to understand that the quality improvement actions were not based on any results of static code analysis tools but on the experience of the developers involved. Thus, as a side effect the validation should also show to some extent whether our base model reflects the common understanding of quality (in the context of maintenance) of experienced developers.

Results: The calculated Spearman’s rho correlation is only moderate, a larger sample of subsystems is therefore limited.

Table III
QUALITY IMPROVEMENTS IN AN AUTOMATION SOFTWARE PROJECT

<table>
<thead>
<tr>
<th>Version</th>
<th>Quality grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9.0</td>
<td>4.15</td>
</tr>
<tr>
<td>2.0.0</td>
<td>3.34</td>
</tr>
<tr>
<td>2.0.1</td>
<td>3.63</td>
</tr>
<tr>
<td>2.0.2</td>
<td>3.42</td>
</tr>
<tr>
<td>2.1.0</td>
<td>3.27</td>
</tr>
<tr>
<td>2.2.1</td>
<td>3.17</td>
</tr>
</tbody>
</table>

Interpretation: The results clearly show steady improvements (as expected) for the versions 2.0.2, 2.1.0 and 2.2.1. Our assessment model calculates a considerable improvement of 12.68% from version 2.0.1 to version 2.2.1. This result reflects the expectations of the quality experts of the project.

Threats to Validity: The most relevant threat we see is that we had only one industry project at hand where the quality experts explicitly invested in quality without using static code analysis tools. The generalizability of this result is therefore limited.

VIII. Conclusions

In practice, a gap exists between abstract quality definitions provided in common quality taxonomies, such as ISO 25010, and concrete quality assessment techniques and measurements [9]. Our overall aim is to close this gap by operationalised quality models. We have shown in this paper our four contributions to achieve this goal: (1) We developed an explicit meta model, which allows us to specify operationalised quality models by the flexible but well-defined concepts of factors, impacts between factors and measures for assessing the factors. (2) Using this meta model, we built a broad, largely technology independent base model that we exemplarily operationalised for the programming languages Java and C#. The freely available and extendable base model captures the most important product factors and their impacts to product quality as defined in ISO 25010. (3) We provided a quality assessment approach, which enables us to use the base model for transparent and repeatable quality assessments. (4) We evaluated two aspects of the complete approach in empirical studies. We found that the
assessment results fit to expert opinion but the strongest results are limited to the maintainability part of the model. In addition, we have developed extensive, open-source tool support for building operationalised quality models as well as performing the quality assessments.

By working on filling the gap in current quality models, we found several more directions of future work that should be followed. First, the base model and its evaluation concentrate on a small number of technologies so far. To be truly broad, we need to take further technologies and contents for the base model into account. Second, we are working on further empirical studies to understand the still existing weaknesses of our approach to further improve them. In particular, we work with all industry partners on drill-downs where system experts rate the usefulness of the quality assessment results.

ACKNOWLEDGMENT

We are grateful to all present and former members of the Quamoco project team as well as all the participants of our interviews and surveys. This work has been supported by the German Federal Ministry of Education and Research under grant number 01IS08023.

REFERENCES

