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Abstract The intrinsic goal of any operating sys-
tem (OS) is to free the application level from tasks
that are either repeating or hard to accomplish. In
the 80s and 90s there have been strong efforts to de-
velop distributed OS providing fully location trans-
parency. Although these projects delivered valu-
able results on certain aspects of distributed com-
puting, satisfactory general purpose distributed re-
source management at the OS level could not be
achieved. We argue that the performance gap be-
tween local and remote operation is the major obsta-
cle for truly transparent distributed resource man-
agement. This performance gap can only be bridged
with significantly increased flexibility at the OS
level. At the same time constant overhead must be
avoided.

Keywords: distributed systems, operating sys-
tems, high performance

1 Introduction

Achieving peak performance in parallel sys-
tems is challenging yet even more difficult
in the case of MIMD [1] like distributed sys-
tems [2], consisting of networks of workstations
with no direct access to remote memory. Try-
ing to build a general purpose distributed op-
erating system (OS) that delivers at least rea-
sonable performance seems to push these well-
known difficulties to the extreme.

The purpose of an OS in general is to release
the application level from difficult, repeating,
or – due to rights – impossible tasks which can
be provided without significant loss of quality
or performance as a service to the application
level. In this sense, a distributed OS should
provide fully transparent management of all
distributed resources, such as processors, mem-
ory and communication bandwidth. The appli-
cation level should neither be concerned with
the distribution of load nor should it have to
deal with the placement of data objects within
the network. It should solely specify an explic-
itly parallel computation and let the OS ar-
range the actual distribution. Notice, in con-
trast to distributed runtime systems full trans-
parency is crucial for distributed OS. The rea-
son for this is that the interplay between appli-
cation and OS level decisions would not be con-
trollable if there was only partial transparency.

Of course, the idea of fully transparent dis-
tributed resource management at the OS level
is all but new. From the late 80s through the
90s a huge amount of work has been invested
into the design and implementation of dis-
tributed OS with systems like Amoeba, Muse,
Apertos, Mungi, Sprite, Chorus, MoDiS, and
Spring [3, 4, 5, 6, 7, 8, 9, 10]. Without any
doubts all of these projects contributed signifi-
cantly to the advancement of the field. But as
we take a look back on these initiatives 10 years
later we have to admit that OS have failed to
live up to their expectations. Research inter-



est is declining and there are still hardly any
commercial distributed OS products despite of
the increasing demand.

Outline

In this paper, we try to give an answer to the
questions why there is no such OS available,
yet and whether such an OS was feasible at
all.

Section 2 argues that the performance gap
between local and remote operation is the ma-
jor source of problems and discusses its impact
on distributed OS. Section 3 proposes signifi-
cantly increased flexibility at the OS level as a
mean to cope with the performance gap. Fi-
nally section 4 summarizes this paper.

2 Distributed OS
and Performance

Obviously there are several technical as well
as non-technical reasons for the absence of dis-
tributed OS, such as market pressure and the
need for compatibility.

But even in the presence of increasing pop-
ularity of interpreted languages like Java [11],
performance problems still remain a major ob-
stacle for further progress in the distributed
OS field. This is because suboptimal resource
management decisions in a distributed OS may
not just cause some performance losses but or-
ders of magnitudes.

2.1 The 105 Gap

The root of this phenomenon is the enormous
gap between local (i. e. direct memory or even
cache) and remote (i. e. network) access. Ta-
ble 1 compares the latency and bandwidth of
local versus remote accesses on an Intel Pen-
tium 4, 3.4 GHz and 100 MBit/s Fast-Ethernet
resp. 1 GBit/s Gigabit Ethernet. Particularly
for small messages, the speed of local versus
remote access may differ by a factor of up to
105.

In practice, this could mean that a paral-
lel computation runs up to 1 day and 3 hours

instead of only 1 second, if an object is dis-
tributed inappropriately! Of course, real situ-
ations are usually less dramatic but well-known
effects, such as false sharing [12], demon-
strate similarly drastic impacts of inadequate
resource management decisions. Clearly, an
OS must avoid the 105 performance penalty as
far as possible by keeping remote communica-
tion to a minimum yet trying to maximize the
utilization of distributed resources.

First, a decision to distribute must be based
on estimates that indicate that the benefits of
distribution outweigh its drawbacks. This is
only possible if the OS possesses additional in-
formation about the structure of the compu-
tation. Second, the OS must carefully distin-
guish between local and remote operation and
treat them with sets of completely different
strategies. This is because there is no single
suitable management strategy in distributed
environments. In contrast to non-distributed
systems, minor deviations from the optimal
strategy may easily cause unacceptable per-
formance degradations due to the 105 perfor-
mance gap.

In [13] we demonstrated how accesses to re-
mote objects can be significantly optimized at
the OS level by dynamically switching between
object replication, object migration, and re-
mote invocation. The criteria for the dynamic
selection of one of these mechanisms are the
frequency of reads and writes. Obviously this
is just one important example for the need of
flexibility. The results can easily be transfered
to other tasks, such as partitioning in DSM
systems [14], adjusting the granularity of trans-
port units [15] and thread creation.

Thus, the 105 gap must be met with a great
deal of flexibility by the OS. Uniform resource
management strategies will always deliver un-
acceptable performance in some situation.

2.2 The Impact of Overhead

Now, the need for flexibility is widely accepted
and the combination and integration of differ-
ent strategies is intensively studied in the lit-
erature, see for example [16, 17, 18, 19]. But



latency (nanosec.) bandwidth (MB/s)
L1 mem TCP (Fast) TCP (Gigabit) L1 (read) mem TCP (Fast) TCP (Gigabit)
4 56.1 2.5 * 105 2.4*105 47787 4322 10.69 51.32

Table 1: Performance gap

unfortunately, flexibility itself causes new trou-
bles for OS.

With runtime systems it is up to the appli-
cation level to pick the right strategy at the
right time. The programmer is expected to
know about the structure of the computation.
He picks adequate strategies and hard-wires
these decisions into the application. Thus,
there is usually no costly decision making dur-
ing runtime. In contrast to this, an OS with
fully transparent distributed resource manage-
ment has to make and enforce decisions during
runtime [20]. For this, it has to collect and
evaluate information, it has to switch between
strategies, and it must make use of indirections
to enable dynamic switching. All of this causes
overhead!

Besides the lack of flexibility, constant over-
head is the second major source of perfor-
mance problems in distributed OS. Compar-
isons of distributed systems supporting loca-
tion transparency with shared memory multi-
processor systems expose this difficulty. For
example, Levelt [21] used parallel matrix multi-
plication to compare the performance of a mul-
tiprocessor system with the distributed system
Orca [22] using identical hardware. Although
the distributed system delivered perfect rela-
tive speed-ups, one can also see from table 2
that 5 nodes (169.9) are needed just to achieve
the performance of a similarly powerful unipro-
cessor (180.5) resp. the shared mem multipro-
cessor with one node only.

Many other distributed OS suffered from
the same problem which is concentrating too
much on relative speed-ups instead of abso-
lute ones or at least acceptable absolute slow-
down. With distribution and relative speed-
ups in mind the system is extended with ad-
ditional techniques, such as DSM, RPC, dis-
tributed thread creation, dynamic load balanc-
ing, etc. This concepts are integrated in a

straight-forward manner using indirections, ar-
gument marshaling, and alike. But all of this
causes additional overhead resulting in a slow-
down instead of the envisaged speed-up. It is
clearly trivial to achieve relative speed-ups if
local execution is just slow enough.

It should be evident, that hardly anyone is
willing to use a distributed OS that requires
multiples of resources just to achieve the per-
formance one would get without distribution.
Even if we are not focused on performance but
want to use distribution for example for in-
creased reliability, a n times slow-down caused
by the OS will never be accepted. The user
would still rather waive OS support and use
an application level controlled runtime system.

2.2.1 Amdahl’s Law Revised

Now, one could argue that an absolute slow-
down of 5 is indeed acceptable because the
investment will pay-off if a large numbers of
nodes (64, 128, . . . ) is used.

If we keep in mind that realistic parallel al-
gorithms contain a significant amount of se-
quential work and combine this with Amdahl’s
law [23]:

Sr =
n

1 + (n − 1) ∗ ts

which gives an upper bound for the relative
speedup Sr dependent on the fraction of se-
quential work ts and the number of nodes n,
then it becomes evident that it is impossible
to deliver satisfactory distributed performance
if there is significant constant overhead regard-
less of the number of nodes used.

To study the impact of additional overhead
with a simple analytical model, we extend Am-
dahl’s law with constant local and synchronous
remote overhead. Constant local overhead is
caused by a wide range of changes to the OS
to prepare for distribution. This includes in-



matrix multiplication (seconds)
nodes 1 2 3 4 5
Orca multicast 810.3 410.6 279.1 209.8 169.9
shared mem. multiproc. 180.5 90.5 60.8 45.9 36.6

Table 2: Comparison of matrix multiplication

direct calls, handling data on heap instead
of stack or registers to allow for distribution,
changed inter process communication (e. g. in-
direct communication via coordinators instead
of signals) or using messages instead of shared
memory. Synchronous remote overhead is ev-
erything needed to actually perform remote op-
erations as they appear in the computation.
One example is the effort needed to accomplish
the remote creation of a thread instead of its
local creation.

Let ts be the sequential and tp the parallel
amount of work, ts +tp = 1. Let n be the num-
ber of processors, l the constant local overhead
and y the additional costs for remote opera-
tions. Sa approximates the absolute speedup
by augmenting Amdahl’s law with l and y.

Sa(l, y) =
ts + tp

tn
=

n

(ts ∗ (n − y) + y) ∗ l

As one can see, minimizing the impact of con-
stant overhead is crucial for achieving reason-
able performance of the system.

Figure 1 shows Sa for ts = 10% and different
combinations of l and y. l, the local overhead,
has a dominant impact on the performance of
the system. If l is only 4, then 32 nodes are
needed to achieve an absolute speed up of 2
already. No further significant improvements
are possible by using more than 32 nodes.

This indicates that the evaluation of man-
agement strategies based on measurements of
relative speed ups on a few nodes must be
taken with care. The extrapolation to larger
numbers of nodes is misleading. Significant
slow-downs on one processor can usually not
be compensated, even if one is willing to em-
ploy large configurations.

Note the fact that only the impact of y
can be decreased with faster network connec-

tions. The dominant factor l is independent
of hardware properties. This means that bet-
ter and faster networks are no solution to the
distributed OS performance problem.

2.2.2 Gustafson-Barsis Revised

Amdahl’s law is based on the assumption that
the size of the problem remains constant inde-
pendent of the number of nodes. This does
not adequately reflect situations, where the
increased computational power is used to in-
crease the size of the problem (e. g. multiply
larger matrices). Gustafson reevaluated Am-
dahl’s law [24] to allow scaling the problem size
with the result Srg = 1 + (1 − n) ∗ ts. Again,
Srg does only approximate the relative speed
up, not the absolute effect. For this we have
to reconsider l and y leading to following esti-
mate:

Sag =
ts + n ∗ tp

(ts + y ∗ tp) ∗ l
=

ts ∗ (1 − n) + n

(ts ∗ (1 − y) + y) ∗ l

Figure 2 shows Sag for ts = 10% and differ-
ent values of l and y. On the one hand it
can be seen that if increased computing power
is used to compute larger problems then lo-
cal overhead does not a priori restrict actual
performance gains. On the other hand, the
performance degradation due to local overhead
remains proportional independent of problem
size and number of nodes. Thus, even if the
problem size scales perfectly with the size of
the configuration, which is rather unrealistic
in a general purpose OS, local overhead still
has to be avoided as far as possible.
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3 Operating System Design

According to the argumentation above, dis-
tributed OS are in a serious dilemma. On the
one hand, uniform management strategies are
unsuitable because of the 105 performance gap.
Any single strategy will deliver unacceptable
performance in some real situation. On the
other hand, flexibility is expensive. It causes
overhead that puts distribution in question.

3.1 Are Distribute OS Worth
Considering?

It is legitimate to ask whether distributed OS
with fully transparent resource management
are realistic, anyway. Maybe distribution man-
agement should simply be left to the applica-
tion level.

One must keep in mind that programmers
may eventually make mistakes or do not even
have enough information about the execution
environment when writing the distributed pro-
gram. This is frequently the case when the
configuration changes after the distributed ap-
plication was written. In this situation the
assumptions and decisions concerning physical
distribution are violated causing unpredictable
performance effects. But since these deci-
sions are coded into the application they must
be changed manually, which is costly, time-
consuming, error-prone, and should therefore
better be left to the OS level.

For increased quality (portability, reliable,
number of bugs, . . . ) and reduced costs of par-
allel and distributed applications from a Soft-
ware Engineering perspective it is worthwhile
to further investigate possibilities to design dis-
tribute OS with the desired degree of trans-
parency and reasonable performance although
setting this goal seems ambitious. Here, it is
important to stress ”‘reasonable”’. From the
considerations above, it should be clear that
distributed OS can hardly be the means to
achieve peak performance. But we state that a
general purpose distribute OS with acceptable
performance is feasible and useful. To achieve
this it is necessary to investigate innovative
ways to achieve flexibility while preserving low
overhead.

3.2 OS = Compile-Time
and Run-Time

We consider all software tools involved in re-
source management decisions as the means to
implement an OS [25, 26]. This includes the OS
kernel, runtime libraries, loader, linker, inlined
and runtime generated code, and the compiler.
The effectiveness of the whole OS depends on
both, the services provided by each tool and
their interplay. Projects like TreadMarks [27]
demonstrated the performance gains that can
be achieved through the integration of these
different tools.

This integration is twofold. First, informa-



tion should be exchanged between all tools
involved in resource management as needed.
For example, it is somehow incomprehensible
that compilers perform sophisticated data flow
analyses but the results are thrown away af-
ter compilation although the runtime system
or OS kernel would need this information to
steer the distribution of tasks and data. In
turn the OS has to perform runtime monitor-
ing causing avoidable overhead. This is clearly
not optimal and must be changed to allow ex-
change of information between different tools.

The second aspect of integration is the pos-
sibility to enforce management decisions with
different tools. For example, a parallel entity
at the application level could be implemented
as a sequential function, a local thread or a
remote thread. The decision for one of these
possibilities can either be made by the com-
piler by generating corresponding target code
or it can be delayed till link time or further
down to a runtime library or even the OS ker-
nel. Flexibility increases with each delay but
efficiency is higher the sooner the decision is
made. Thus, by integrating the whole tool set
into one holistic view of the OS we gain the
possibility to balance flexibility with its costs.

4 Conclusion

So far, general purpose distributed and paral-
lel OS have failed to live up to their expecta-
tions. In this paper we argued that substantial
performance problems are a major reason for
this. We identified the 105 performance dis-
crepancy between local and remote operation
and constant overhead as the major sources of
these problems and explained why these prob-
lems are particularly difficult to the OS field.
We also showed that these problems can not be
solved satisfactorily with improved hardware.
Instead, great efforts at the OS level are nec-
essary to cope with the 105 gap while keeping
the additional overhead low.

Based on our analytical performance models
in section 2 it is evident that there is still a long
way to go before we can expect general purpose

distributed OS with reasonable performance.
Nevertheless, we think this is a challenging and
interesting field of research worthwhile further
efforts.
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