
BOPS { Balancing Objects and Pages in a Shared SpaceTechnische Universit�at M�unchenInstitut f�ur InformatikGermany, 80290 M�unchenC. Rehn, M. Pizkafrehn,pizkag@in.tum.de
AbstractDistributed Shared Memory (DSM) systems usually employa number of hardware pages as management units. The gapbetween the size of application objects and coherence unitsleads to the undesirable e�ect of false sharing, resulting ina signi�cant performance degradation for a wide range ofapplications. To prevent false sharing and reduce the scopeof consistency actions some systems introduce objects as theunit of sharing. The size of shared objects is deduced fromapplication objects and may not change during program ex-ecution which has usually a negative inuence on DSM per-formance.We present a distributed memory management whichis neither oriented to application objects nor to page size.Object granularity may vary during program execution toadapt the unit of sharing to application requirements whichusually change over the time. This leads to a prefetch-ing of the working set of activities and thereby improvedperformance by reducing the number of messages sent inthe distributed system. Our memory management is inte-grated into a language-based approach to construct struc-tured object-based distributed systems taking advantage ofthe implicit structural relationships between passive and ac-tive objects to further improve the performance.1 IntroductionThe relevancy of distributed computing in practice is still farbehind the potentialities of nowadays available distributedcomputing power, provided by powerful workstations andhigh-speed interconnection networks. Obviously the rea-son is tremendous complexity. Distributed computing eitherburdens the programmer with additional concepts and theire�ects or it demands tasks from the resource managementsystem that are hard to ful�ll. Somehow contradictory tothe requirement of simplicity, execution performance has tobe convincing. Distributed execution must not only providescalability but also low overall management overhead. Per-formance has to be reasonable compared to sequential andcentralized software solutions, as well as it should provide

speed-ups if additional computing resources are available.Peak performance on distributed hardware platforms canbe reached by using explicit message passing [GBD+94, BL92].We argue, that writing parallel or even distributed programswith explicit message passing is a cumbersome and di�culttask. The shared memory paradigm obviously provides aneasier to use abstraction, since it moves the task of com-munication from the application-level to the system-level.The idea of a resource management system, that enforcesthe abstraction of a shared memory in a distributed envi-ronment (Distributed Shared Memory) is not very new, butsince the �rst DSM implementation by Li [Li86] in 1986,the performance of most DSM systems is still unsatisfac-tory [Lu95]. Performance problems of DSM implementa-tions mainly arise from false sharing, di� accumulation, miss-ing hardware support to detect access violations on a �ne-grained basis and communication overheads originating inadditional messages in contrast to PVM [LDCZ97].The negative e�ects of false sharing can be reduced byallowing multiple-writers. The number of messages sent inthe distributed system can be decreased in several ways.Objects may be grouped dynamically into larger units oftransportation [BS93] and the consistency semantics can beweakened. An implementation of a DSM concept has to con-sider mechanisms provided by the hardware. The commonexisting page-fault mechanism should be exploited to detectaccesses to locally unavailable objects e�ciently.In this paper we present the concept and implementationof a decentralized distributed virtual memory managementthat provides simplicity as well as e�ciency. The distributedmemory management uses hardware properties to identifyaccesses to locally unmapped objects. E�ciency is gained bycombining the advantages of page-based and object-basedDSMs introducing the concept of object clusters to allowdynamic and exible determination and modi�cation of thesize of shared units while still making use of the page-faultmechanism to provide an application-oriented resource man-agement. In addition we introduce our language-based ap-proach to construct structured object-based distributed sys-tems. This allows the recording of well-de�ned structural de-pendencies among all objects of the system which are usedby the memory management to improve performance.The rest of the paper is organized as follows. In thenext section we will briey discuss related work. Section 3presents our programming model and in section 4 the struc-tural dependencies implied by this programming model aredescribed. In Sections 5 and 6 we will elaborate on the con-cepts and the implementation of BOPS, before the perfor-mance of BOPS is analyzed in section 7. Section 8 summa-

rizes the main features of our approach and gives an outlookon future work.2 Related WorkMost software realizations of Distributed Shared Memoryare using conventional virtual memory management hard-ware and local area networks. Li's Ivy system [Li86] wasthe �rst implementation of a page-based DSM. Newer imple-mentations are Mirage+ [FHJ94], TreadMarks [ACD+96] orOdin [Pea96]. All of these implementations have one thingin common: the size of management blocks of the DSM isbottom-up oriented, equal to hardware page sizes ignoringthe needs of applications.Other implementations try to avoid these problems. Theimplementation of Midway [BZS93] is an example for a DSMwhich is not bound to hardware pages. All store operationsare done by the Midway library. The coherence protocolruns without triggering a hardware page-fault. This neces-sitates the execution of additional operations even if theaccessed object is locally available and leads to performancedisadvantages. BOPS uses objects while still exploiting theadvantage of hardware support. In Midway the library hasto be entered each time a write operation is necessary, inBOPS writes can be done without additional management,if the object is locally mapped. In addition, object-basedDSMs burden the programmer with an object-based syn-chronization model. The granularity of the unit of sharingin object based systems is usually determined by applica-tion objects which may lead to performance losses if twodi�erent processes try to access di�erent parts of an appli-cation object. BOPS allows objects of varying granularitywhich is not determined by application objects but by thedynamically changing application needs.The Shadow DSM [GPR97] also tries to exploit the pagefault mechanism for an object based memory at the expenseof an additional indirection for memory accesses.The performance advantage of TreadMarks comparedwith the region-based protocol as described in [BK98] stemsfrom reduced message tra�c because of the prefetching ef-fect and the spatial locality of many applications motivatedthe introduction of object clusters in BOPS. Finding theworking sets of activities, this prefetching e�ect can be ex-ploited by the system management and reduce the DSMpage fault rate and network tra�c.Just as in Orca [Bal94], BOPS is interwoven with a dis-tributed object-based programming language. Compiler andruntime system are used to enable static and dynamic anal-ysis supporting resource management.3 Programming ModelThe idea of BOPS is based on a distributed system architec-ture [PE97], which is featured by an object-based, top-downdriven and language-based approach combined with struc-turing facilities to e�ciently bridge the gap between appli-cation programmers and hardware. The structural depen-dencies between the objects are exploited by the memorymanagement to gain e�ciency. This section gives a briefoverview about the main concepts of the distributed systemarchitecture as far as they are relevant.We distinguish between named objects which are knownat compile time and anonymous objects which are dynam-ically created in the path of execution. Pointers to anony-mous objects can be duplicated and passed between objects

in the system whereas the creation of references to namedobjects is not supported.Objects can be either passive or active and can be cre-ated dynamically at run time. Active objects serve for theexplicit speci�cation of parallelism on a high level of ab-straction and are called actors. The creation of an actorestablishes a new, concurrent ow of control. Actors mayexecute subprograms as in other procedural programminglanguages.As opposed to many other object-based languages, dele-tion of objects is automatically handled by the runtime sys-tem rather than explicitly by the programmer. Terminationdependencies guarantee that an object exists as long as it isaccessible by other objects.Waiting for the termination of the forked actors (joinoperation) is implicitly performed by the runtime system,since an activity is not allowed to be deleted prior to thetermination of all its forked child-actors. Passive objectsare deleted with the termination of the associated actor,method or subprogram.We call the collection of passive objects together with theactor they depend on with respect to its existence an actorsphere. Each actor sphere is assigned to exactly one node inthe distributed system. If an actor tries to access a passiveobject belonging to a di�erent actor sphere located on aremote host it gets a copy of the page(s) the passive objectis mapped to. Figure 1 illustrates termination dependenciesby showing a snapshot of a program in execution.

actor
subprogram lifetime dependency

passive object actor sphereFigure 1: Termination dependencies of an example programEach object is created as an instance of a class describ-ing component, called generator and has a declaration and apossibly empty statement part. The declaration part mightcontain declarations of local objects, methods or nested gen-erators. The statement part can be compared with a con-structor in common objectoriented languages. An objectcan only be used through one of its methods.Another important feature is the principle of nestingwhich is well known from languages such as Ada or Pas-cal. Nesting enables the programmer to specify wellstruc-tured applications which is advantageous especially for bigapplications. Based on the nesting of classes di�erent de-pendencies between objects are implicitly established.Actors may cooperate in a client-server style by syn-

chronous method invocations or by using shared passive ob-jects. Hence, we support message passing as well as sharedmemory paradigm. The invocation of an actor method ishandled in the same way as a method invocation of a passiveobject except that the caller and callee synchronize using op-eration oriented rendezvous semantics. The caller is blockedand has to wait for the callee to accept the request. Whenthe method returns both the caller and the callee continuetheir computation in parallel.The operation oriented rendezvous concept is the onlyexplicit synchronization mechanism available in our approachsince other low-level mechanisms like semaphores or bar-riers are error prone and aggravate distributed program-ming. Implicit start-synchronization takes place betweenthe generating actor and a newly generated actor. At start-synchronization a coherence event happens to asserts that anewly created actor has the same view on memory as its cre-ator at the time of creation. Stop-synchronization is also animplicit synchronization and occurs between a terminatedactor and its creator. The coherence event connected tostop-synchronization asserts that all memory modi�cationsdone by an actor are visible by its creator after termina-tion. Between synchronization points two actors sharing apassive object cannot make any assumptions about the or-der of operations performed on the object. This allows thedelay of write operations and update of existing copies tosynchronization events and changes the semantics of updateoperations since they do not have immediate e�ect.4 System StructuresIn this section we describe the system structures which de-scribe dependencies between active and passive objects thatare implicitly determined by the programmer. These de-pendencies can be exploited as described in later sections tomake memory management more e�cient.The nesting of generators and objects implies a relationbetween objects called de�nition dependency. An object Ois de�nition dependent on object P { �(O; P), the gener-ator for O is contained in the declaration part of P .Along with the creation of a new actor B by an actorA, a new ow of control is established that executes thestatement part of B in parallel to the computation of A.This relationship is recorded in the � relation. An object Boperates in parallel to object A { �(B;A) , B is an actorand was created by A.To describe the communication dependencies betweenactors that synchronize with rendezvous semantics as de-scribed in section 3 we introduce the � relation. An actorA communicates with an actor B { �(A;B), A requests aservice from B, B has accepted the service and both, A andB are synchronized to perform the requested service.We call an object O local to an object P { �(O;P), Ois a named object and is declared in the declaration part ofP . The dependency between an anonymous object and thelocation of its generator is expressed by the relation. Anobject O is � dependent on object P { (O; P), O is ananonymous object and P is the location where the generatorthat is needed to create pointers to O is declared.Combining the � and relation we can de�ne the termi-nation dependency already described in section 3. An objectO is called termination dependent on object P { �(O;P),�(O;P) and O is a named object or (O; P) and O is ananonymous object.

5 BOPS Concepts and DesignTo provide distributed memory management functionalityfor units of exible and dynamic granularity the concept ofobject clusters is introduced. An object cluster comprisesthe working set of an actor. All objects accessed while exe-cuting the statement part of an actor or subprograms calledby this actor must be within its object cluster at the time ofaccess. In this paper the word object denotes a compound ofvirtual addresses. Objects are oriented to application needsand may vary over the time. Programmer de�ned encap-sulated data structures are called application objects. Eachpath of execution i.e. each actor has its own object cluster.As shown in �gure 2 virtual addresses are bound to a setof objects O by a function vot : VA ! 2O. The functionoct : O ! OC, binds objects to object clusters where OC isthe set of object clusters. All these function are dependent
virtual addresses (VA)

objects (O)

toc

vot

object clusters (OC)

actors

1:1 1:1

Figure 2: Building of object clusterson time and are speci�c to a single actor. The clustering isachieved by the integrated management of the distributedsystem through static analysis done by the compiler and dy-namic analysis done by the runtime system which observesmemory access to enrich the information used for futuremanagement decisions. The assignment of virtual addressesto objects to object clusters may change dynamically duringprogram execution according to changing access patterns. Avirtual address can be bound to one or more objects at agiven time whereas an object belongs to exactly one objectcluster. An object clusters is a possibly empty set of objects.Object clusters are introduced to reduce communicationin the distributed system. On object cluster fault, whichis triggered whenever an actor tries to access an object Onot available on the local node Ni, the memory managementlocates the node Nj running the actor belonging to the sameactor sphere as O. BOPS asserts that all objects belongingto an actor sphere are available on the node running theconnected actor. This node sends not only the object thatcaused the object cluster fault but the values of all virtualaddresses belonging to the object cluster that are availableon Nj but not on Ni. In addition to reducing the numberof messages the prefetching characteristics will decrease thenumber of object cluster faults.To obtain a maximum degree of concurrency and reducecommunication we allow multiple copies of objects with readand write access. All modi�cations to objects within an

object cluster are recorded and propagated on object clusterrelease events.This raises the question, when are object clusters re-leased. It can be answered by looking at the implicit andexplicit synchronization concepts as described in section 3.The memory management has to assert the coherence eventslinked with start-, stop- and rendezvous-synchronization.Thus all pending modi�cations done by an actor must bepropagated when a new actor is forked or when an actorterminates. Likewise all pending modi�cations done by thecaller have to be propagated on rendezvous-synchronizationand the modi�cations of the callee when the called methodreturns. Because transitive dependencies may exist betweendi�erent callers it is not enough to propagate pending callermodi�cations to the callee. By the return from the syn-chronizing method the modi�cations of both, the caller andthe callee must also be distributed among the other nodesin the distributed system. The propagation of modi�cationscan be delayed for start- and stop-synchronization if the cre-ating and created resp. terminating and joining actor run onthe same node. Only if an actor is forked on a remote hostthe changes done by its � predecessors running on the localhost in the � predecessor chain down to the the �rst onenot running locally need to be distributed. This delay hasno impact on the semantics of start-synchronization. Like-wise the propagation triggered by stop-synchronization canbe delayed if the joining � predecessor and the terminatingactor are located on the same host.Changing application requirements force the adaption ofthe functions vot and oct. To enlarge object clusters byadding objects or objects by adding virtual addresses noth-ing special has to be done except the adaption of the func-tions vo and oc. In contrast to the extension the reduction ofan object cluster resp. object is more complicated. Both thefunctions vo and oc are changed and the memory manage-ment has to remember modi�ed removed objects resp. vir-tual addresses until the next object cluster release. Thetermination of an actor is combined with the reduction ofits object cluster to the empty set.6 ImplementationIn this section some implementation issues of the BOPS con-cepts are discussed. The hardware con�guration chosen forthe implementation consists of 14 SUN UltraSparc 1 work-stations, that are interconnected via a 100MBit/s Fast Eth-ernet and run Linux (UltraPenguin-1.1.9 distribution). Theuse of Linux allows us to modify the kernel where necessaryand even implement the kernel related parts of BOPS as amodule.The implementation of BOPS is based on the impera-tive, object-based and type-save programming language IN-SEL (Integration and Separation Language) [Win96] whichis derived form the concepts described in section 3. An IN-SEL compiler called gic has been implemented by adaptingthe GNU C compiler gcc [Piz97]. The structural relation-ships between INSEL objects are automatically managedby gic generated code as part of the runtime system. Forexample displays, which are normally used for compilingprogramming languages that allow the nesting of functions,have been expanded by host-identi�ers. This additional �eldmakes it possible to �nd the hosts running the � predeces-sors. To implement BOPS the compiler analysis and codegeneration is enhanced by object cluster management. Inaddition code to call functions executing object cluster re-leases and the maintenance of pending write accesses is gen-

erated.For network communication between the hosts of the dis-tributed system we use the TCP/IP protocol stack since itis reliable and available.To gain e�cient memory management the hardware sup-port provided by the page fault mechanism is exploited byBOPS. The functions vot and oct as described in section5 imply an assignment between object clusters and virtualmemory pages. If a virtual address v 2 V A belongs to anobject o 2 O which belongs to an object cluster c 2 OC thevirtual memory page p 2 V P , v belongs to, is assigned to cby the function pct : V P ! OC. This is shown in �gure 3.
tpc

virtual addresses (VA)

virtual memory pages (VP)

object clusters (OC)

t

t

vo

oc

Figure 3: Object clusters and memory pagesAssociated with each host is a pending write queue whichkeeps track of pages altered by local actors. The queue isneeded on object cluster synchronization events. All mod-i�cations to pages listed in both, the queue and the objectcluster of the releasing actor are propagated to nodes hold-ing a copy and deleted from the pending write queue.To �nd the owner of a page the concept of home nodesis introduced. If a host needs a copy of a page it alwaysapplies to the home node. At each point in time a virtualmemory page has exactly one home node which owns thatpage and keeps track of nodes holding copies. To assert theuniqueness of the node owning a page some restrictions tothe memory layout must be taken into account. These aredescribed for named and anonymous objects below. Thehome node is not only useful to get a copy of a page butalso consulted by an actor when releasing an object clusterto �nd hosts holding a copy.The home node of pages containing named objects is thenode running the actor this object is termination dependenton. To ensure the uniqueness of home nodes, named objectsbelonging to di�erent actor spheres may not share the samememory pages. This is not a hard restriction and can easilybe satis�ed by assigning each actor its own amount of mem-ory pages. All objects which are termination dependent onthis actor are realized using those pages. To �nd the ac-tor sphere and thus the home node of the pages a namedobject O belongs to, the � and � relations as described insection 4 are used. Assuming an actor A tries to access anamed object O, O must be either a local object of A ora non-local object belonging to one of the � predecessors ofA. If O would be not local to A and not local to any of A'spredecessors, O would not be in the scope of A. If O is localto A it must be present on the node running A since this

would be the home node of O's virtual memory page(s). IfO is not local to A we can �nd the owner by following the� relation chain to �nd the youngest incarnation of an actorA0 with �(O;A0) � �(O;A0). The node running A0 must bethe home node of the page(s) belonging to O.The home node of pages containing anonymous objectscan be determined using the relation. The uniqueness ofthe home node of virtual memory pages belonging to anony-mous or named objects requires that anonymous and namedobjects are never mixed on the same pages. This is no severerestriction since anonymous objects are located on the heapand named object on the stack. Thus we only have to claimthat anonymous objects which are instances of generatorsbelonging to di�erent actor spheres must not be located onthe same pages. This can easily be enforced by the memorymanagement since it is responsible for the allocation andmapping of memory for anonymous objects. The method to�nd the node running the actor an anonymous object P be-longs to is analogous to the one described above for namedobjects. P is only usable for an actor A if the generator forP is local to an actor A0 and A0 is a � predecessor of A. So Aonly has to follow the chain of � relations down to the actorA0 with (P;A0). The host running A0 is the home node ofP . To obtain a maximum degree of concurrency and reducecommunication we allow multiple copies of pages with readand write access. Initially shared memory pages are write-protected. When an actor tries a write access to an objectlocated on a protected page, write-protection is removed,a local copy(twin) is made and an entry is added to thepending write queue. This twin is later used to create adi�, which describes the local modi�cations of that page.This is forced when an object cluster is released and thedistribution of modi�cation cannot be delayed (cf. section5). BOPS performs a word-by-word comparison of all pagesentered in both, the pending write queue and the objectcluster and their twins. Using the di�s, other hosts areable to reproduce the local changes and update their pagesaccordingly.The existing page-fault mechanism is used to trigger anobject cluster fault when a hardware page belonging to thatcluster is missing. The page-fault is handled by the kerneland not handed on to a user level signal handler. It resolvesthe problem by locating the home node of the page anddemanding a copy of that page resp. all locally not avail-able pages belonging to the object cluster according to thefunction pct. The home node adds entries to the copysetsof the locally owned pages and sends their contents to thedemanding host. In addition to reducing the number ofmessages the prefetching characteristics induced by objectclusters will decrease the number of object cluster faults.The multiple writer protocol has the disadvantage ofneeding twice the amount of memory for modi�ed pages.If there is no more local RAM for creating a twin, the oper-ating system may force the release of pages recorded in thepending write queue to free the space needed by copies ofpages participating in these clusters.7 Performance AnalysisThis section compares BOPS to page-based and object-basedsystems. Since the implementation is not yet �nished we arenot able to present any measurements.As described in [LDCZ97] low performance of DSM sys-tems compared to PVM is mainly caused by additional com-munication costs. More messages and more data are sent be-

cause of the separation of synchronization and data transfer,extra messages to handle access misses caused by invalida-tions, false sharing and di� accumulation.To reduce the number of messages and improve perfor-mance, BOPS does not only transfer a single page at a timebut all available pages belonging to the working set of anactor. This enlargement of messages has hardly any nega-tive e�ects on performance, because in typical networks ofworkstations, sending large data packages is not much moreexpensive then sending small ones [LH89] mainly due to thesoftware protocols. As a side e�ect future page-faults areprevented. In contrast to the idea of transferring more thanone adjacent pages at a time we analyze the applicationsaccess patterns and aggregate the pages accordingly.Experiments with software DSMs releasing the consis-tency model and modifying coherence granularity [ZIS+97]show that two combinations generally do a good job. Thesequential consistency protocol and �ne granularity units ofsharing or the multiple writer protocol with coarse grain co-herence units perform good for most applications. Becausecommodity workstations o�er no hardware access control ona �ne-grained basis we decided to choose the multiple writerapproach.In contrast to object-based DSMs we use the page-faultmechanism and therefore have no additional overhead whenlocally mapped memory is accessed. Object granularity isnot oriented on application objects but on current appli-cation needs and adapts continuously over the time. Forexample, if the application object is a matrix A and everythread of a distributed algorithm works on a single line, eachAi� can be made up in one object cluster ci.If we modify our approach to have exactly one pagebound to an object cluster for each point in time, BOPSwould correspond to a page-based DSM resulting in a lossof the prefetching characteristic usually achieved by the clus-tering.BOPS exploits structural dependencies to �nd the ownerof a memory page very e�ciently in contrast to alternativeapproaches. For example doing a broadcast interrupts eachprocessor, using a centralized-server has the e�ect of serial-izing queries, reducing parallelism and being a single pointof failure. The probable owner algorithm may send n � 1messages in the worst case if there are altogether n nodes inthe distributed system.The programming model proposed in section 5 allowsto defer a huge amount of object cluster releases to furtherreduce the amount of messages.8 ConclusionIn this paper we presented the distributed memory man-agement BOPS based on a distributed system architecturefeatured by an object-based, top-down driven and language-based approach combined with structuring facilities. Thedesired e�ciency is attained with BOPS by dynamic andalterable determination of memory management units ac-cording to the working set of activities. Although BOPSmanages clusters of any size, e�ciency is reached by ex-ploiting the page-based faulting mechanism provided by thehardware instead of choosing an all in software implemen-tation. Implicit structural dependencies resulting from ourlanguage-based approach are exploited for an e�cient local-ization of page owners.According to [ZIS+97] the multiple writer protocol doesnot work well when synchronization frequency of applica-tions is high. Thus we intend to enlarge the exibility pro-

vided by BOPS. In addition to the dynamic and exible de-termination of object clusters we will enable dynamic choos-ing of coherence protocols conform with application needs.Beside the multiple writer, a single writer protocol will beimplemented and the compiler will be enhance to decide be-tween an invalidate or update strategy.In a second project we are investigating distributed loadbalancing techniques. The impacts of load management onmemory management and vice versa will inuence furtherdevelopment of BOPS.References[ACD+96] Cristiana Amza, Alan L. Cox, SandhyaDwarkadas, Pete Keleher, Honghui Lu, Ra-makrishnan Rajamony, Weimin Yu, and WillyZwaenepoel. TreadMarks: shared memory com-puting on networks of workstations. Computer,29(2):18{28, February 1996.[Bal94] Henri E. Bal. Report on the programming lan-guage Orca. Technical report, Dept. of Mathe-matics and Computer Science, Vrije UniversiteitAmsterdam, 1994.[BK98] B. Buck and P. Keleher. Locality and perfor-mance of page- and object-based DSMs. In Proc.of the First Merged Symp. IPPS/SPDP 1998),pages 687{693, March 1998.[BL92] Ralph M. Butler and Ewing L. Lusk. Moni-tors, Messages, and Clusters: the p4 ParallelProgramming System. Technical report, Mathe-matics and Computer Science division, ArgonneNational Laboratory, Argonne, Illinnois, 1992.[BS93] W. J. Bolosky and Michael L. Scott. False shar-ing and its e�ect on shared memory performance.Proc., Fourth Symp. on Experiences with Dis-tributed and Multiprocessor Systems (SEDMS),September 1993.[BZS93] Brian N. Bershad, Matthew J. Zekauskas, andWayne A. Sawdon. The Midway DistributedShared Memory System. In Proceedings of theIEEE CompCon Conference, 1993.[FHJ94] B. D. Fleisch, R. L. Hyde, and N. C. Juul.MIRAGE+: A Kernel Implementation of Dis-tributed Shared Memory on a Network of Per-sonal Computers. Software|Practice and Expe-rience, 24(10):887{909, October 1994.[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, We-icheng Jiang, Robert Manchek, and Vaidy Sun-deram. PVM 3 user's guide and reference man-ual. Technical report, Engineering Physics andMathematics Division, Oak Ridge Laboratory,Oak Ridge, Tennessee, September 1994.[GPR97] S. Groh, M. Pizka, and J. Rudolph. Shadow-stacks { a hardware-supported dsm for objects ofany granularity. In A. Goscinski, M. Hobbs, andW. Zhou, editors, 1997 3rd International Confer-ence on Algorithms And Architectures for Paral-lel Processing (ICA3PP'97), pages 225{238, dec97.

[LDCZ97] H. Lu, S. Dwarkadas, A. L. Cox, andW. Zwaenepoel. Quantifying the performancedi�erences between pvm and treadmarks. Jour-nal of Parallel and Distributed Computing,43(2):65{78, June 1997.[LH89] Kai Li and Paul Hudak. Memory Coherencein Shared Virtual Memory Systems. ACMTransactions on Computer Systems, 7(4):321{359, November 1989.[Li86] Kai Li. Shared Virtual Memory on LooselyCoupled Multiprocessors. Dissertation, Depart-ment of Computer Science, Yale University, NewHaven, CT, October 1986.[Lu95] H. Lu. Message-Passing vs. Distributed SharedMemory on Networks of Workstations. Master'sthesis, Department of Computer Science, RiceUniversity, May 1995.[PE97] M. Pizka and C. Eckert. A language-basedapproach to construct structured and e�cientobject-based distributed systems. In Proc. ofthe 30th Hawaii Int. Conf. on System Sciences,volume 1, pages 130{139, Maui, Hawai, January1997. IEEE CS Press.[Pea96] A. N. Pears. Odin: Implications and Perfor-mance of a Novel DSM Design. In 11th Int'lConf. on Systems Engineering (ICSE'96), Jan-uary 1996.[Piz97] Markus Pizka. Design and implementation of thegnu insel-compiler gic. Technical Report TUM-I9713, Institut f�ur Informatik Technische Univer-sit�at M�unchen, April 1997.[Win96] H.-M. Windisch. The Distributed ProgrammingLanguage INSEL - Concepts and Implementa-tion. In High-Level Programming Models andSupportive Environments HIPS'96, 1996.[ZIS+97] Yuanyuan Zhou, Liviu Iftode, Jaswinder PalSingh, Kal Li, Brian R. Toonen, IoannisSchoinas, Mark D. Hill, and David A. Wood.Relaxed consistency and coherence granularityin DSM systems: A performance evaluation.In Proceedings of the ACM SIGPLAN Sympo-sium on Principles and Practice od Parallel Pro-gramming (PPOPP-97), volume 32, 7 of ACMSIGPLAN Notices, pages 193{205, New York,June 18{21 1997. ACM Press.

