Book Title 1
Book Editors
10S Press, 2003

Validating Documentation With Domain
Ontologies

Leonid Kof!, Markus Pizka
Fakultaet fuer Informatik, Technische Universitaet Muenchen, Munich, Germany.

Abstract. Do we always use the same name for the same concept? Usually not.
While misunderstandings are always troublesome, they pose particularly critical
problems in software projects. Requirements engineering deals intensively with re-
ducing the number and scope of misunderstandings between software engineers
and customers. Software maintenance is another important task where proper un-
derstanding of the application domain is vital. In both cases it is necessary to gain
(or regain) domain knowledge from existing documents that are usually inconsis-
tent and imprecise.

This paper proposes to reduce the risk of misunderstandings by unifying the ter-
minology of the different stakeholders with the help of an ontology. The ontology
is constructed by extracting terms and relations from existing documents. Applying
text mining for ontology extraction has an unbeatable advantage compared to man-
ual ontology extraction: Text mining detects terminology inconsistencies before
they are absorbed in the ontology. In addition to this, the approach presented in this
paper also introduces an explicit validation of ontology gained by text mining.

1. Documents are Always Inconsistent

Usually, some kind of requirements document is written in the beginning of a software
project. After requirements elicitation, one of the first tasks of the software developer is
to understand the requirements document which includes trying to understand the termi-
nology used. But practical experiences show that apart from being imprecise, require-
ments documents also use inconsistent terminology.

A simple steam boiler specificatidn [1], written for a formal methods contest, for ex-
ample, looked extremely precise at first glance. However, the document called the same

measuring unit in different places “water level measurement device”, “water level mea-
suring unit”, “device to measure the quantity of water”, Obviously, this unwanted
obfuscation hampers understanding of the domain. The reader can not be sure whether
there is just one unit or two or three different devices. And of course, real life specifi-
cations, not written for an academic formal methods contest, are very likely even less
consistent. Furthermore, real life documents are usually much longer rendering manual

detection and resolution of such inconsistencies virtually impossible.

1Correspondence to: Leonid Kof, Fakultaet fuer Informatik, Technische Universitaet Muenchen,
Boltzmannstr. 3, D-85748, Garching bei Muenchen, Germany Tel.: +49 89 289-17834; Fax: +49 89 289-17307;
E-mail: kof@in.tum.de.

The consequences of this confusion grow with the progress of a software system
through the software life cycle. At the later maintenance stage not only the documenta-
tion is inconsistent, but also the terminology used in the code does not necessarily coin-
cide with the documentation. Sneed concludes$in [2] that in many sysiemmsstiures
and data are named arbitrarily Clearly, this strongly contributes to the fact that soft-
ware maintenance consumes 80% of all costs for software and 50% out of these 80%
must be devoted to program comprehension [3].

The goal of the approach presented in this paper is to detect and eliminate termi-
nology inconsistencies by building consistent ontologies. The ontology extracted from
documents and code are themselves validated either via prototyping (in requirements
engineering) or by comparison with the implemented domain model (in the case of re-
engineering). After validation by the stakeholders, this ontology will then be used as a
consistent conceptual basis in the development or maintenance process.

Outline

The reminder of this paper is organized as follows: Se¢fjon 2 gives an overview of exist-
ing text analysis methods. Sectjoh 3 shows how ontologies can be extracted in general,
whereas Section| 4 introduces an ontology extraction approach based on text analysis.
In[5 we will show how ontology extraction can be embedded in the process of require-
ments engineering (or software re-engineering) and how the extracted ontology becomes
validated, though validation is performed differently for requirements engineering and
re-engineering. Finally, Sectigph 7 summarizes the results of the proposed approach.

2. Related Work on Text Analysis

Document analysis for itself is neither a completely new problem nor a new solution
in software engineering. There have already been various attempts to apply text analy-
sis to requirements documents. In [4] Ben Achour classifies the linguistic methods of
requirements engineering as either syntactic, lexical, or semantic.

Before giving an overview of the related approaches, we want to pose a set of criteria
making a text analysis approach suitable for requirements documents analysis:

e The approach should not rely on any firm expression patterns. This is necessary
due to extremely poor quality of requirements documents and practical impossi-
bility to enforce any writing style.

e The approach should be interactive and not completely automatic. This is neces-
sary to detect inconsistencies in the analyzed document. As praxis shows, incon-
sistencies are inevitable in requirements documents, which makes a completely
automatic approach unfeasible. As Aussenac-Gilles [5] and Goldin & Belrry [6]
state, completely automated technique is not desirable as it potentially results in
wrong extraction or information loss. Obviously, the human interaction should be
limited to validation activities and should be unnecessary, for example, for pure
term extraction.

e The approach should not rely on any previous domain knowledge. It is mostly
the case in requirements engineering, that software at project beginning engineers
have little superficial knowledge about the application domain, which causes dif-
ficulties in understanding the customer.

e The approach should extract not only terms relevant for the application domain,
but also relations between these terms (i.e., ontology extraction instead of glossary
extraction).

Among the three classes of existing approaches (lexical, syntactical, and semantical),
lexical approaches are the most robust ones. Lexical methods, as proposed by Goldin &
Berry [6], extract terms on the basis of common character sequences occurring in dif-
ferent sentences: any character sentence appearing in at list two sentences is a poten-
tial domain term. The decision whether the character sequence is really a term is made
manually by the analyst. This simplicity is also the reason for the robustness of the lex-
ical techniques. However, lexical approaches are limited to term extraction, they do not
provide any term classification.

Syntactic methods are the oldest and the best known ones: Abbott suggested in [7] a
method of terminology extraction based on an analysis of substantives, verbs, etc. (sub-
stantives become classes, verbs become actions, etc.) A similar proposal was made by
Chen in [8]. Abbott states,

Although the process we follow in formalizing the strategy may appear mechani-
cal, it is not (given the current state—of—the—art of computer science) an automatable
procedure.

The techniques proposed by Abbott and Chen could certainly be automated, today, using
modern “Part—of-Speech” taggers (see for example Ratnaphaikhi [9]). However, even if
they were automated, these techniques would not produce a complete ontology but only
the bare terminology.

A number of syntactic approaches were proposed for ontology extraction was pro-
posed for other (not software engineering) applications. For example, Hearst [10] sug-
gests a heuristics for extraction of the “is-a” relation from text. Berland and Charniak [11]
extend the idea of Hearst to the extraction of the “part-of” relation. Degeratu and Hatzi-
vassiloglou[[12] use ideas similar to Hearst to extract the ‘terms and relations from le-
gal documents. The three above approaches, although sensible in the domains they were
developed for, have common drawbacks making them barely applicable to requirements
engineering:

e they rely on certain firm expression patterns,
e they are completely automated and do not give the user a validation possibility.

Other existing syntactical techniques, like those by Lameé [13] and Zhou ét al. [14] do
not rely on firm expression patterns, but they require a-priori knowledge of domain ter-
minology to become applicable.

Semantic techniques like those by Fudhs [15], Gervasi and Nuseibeh [16] or Am-
briola and Gervasi [17] translate every sentence into a logical formula. This is surely
even more than ontology extraction, but they rely on firm predefined expression patterns,
which makes these approaches barely applicable to real life requirements documents.
Furthermore, theysea given ontology to work, but they do not produce one.

The summary of this overview on related work on text analysis is obvious: there is no
ontology extraction approadatisfying the above requiremertssoftware engineering,
yet! One could object that text mining was not necessary for ontology extraction. But, the
only alternative would be purely manual ontology design (as ih [18]) which would imme-

diately lead into the troubles that we aim to overcome. Manual design does not reliably
detect terminology inconsistencies but rather is a major source for inconsistencies.

The remainder of this paper describes our proposed ontology extraction approach
and its embedding into software engineering process. In the context of the presented
work an ontology is defined as a taxonomy enriched with associations. The taxonomy
itself consists of a set of terms and the “is-a"relation.

3. Ontology Construction Basics

The concept of an “ontology” was introduced in artificial intelligence as a means for
communication between intelligent agents (see for example [19]). Today, it is regarded
as a generally useful concept to communicate concept dependencies. As software de-
velopment involves communication between “intelligent agents”, here called software
engineers and domain experts, an ontology can be a valuable instrument to establish a
common language within a software project.

3.1. Do We Actually Need an Ontology?

At first it might seem that an ontology is unnecessary because a common language could
also be established with a simple glossary. However, a brief example by Zave and Jack-
son [20] shows that a simple glossary quickly falls short in establishing a common un-
derstanding. The context of this example is a hypothetical university information system
with a definition of the term “student”, the binary relation “enrolled”, and a conversation
between the two agents Able and Baker:

Able: Two important basic types astudentandcourse There is also a binary re-
lation enrolled If the basic types and relations are formalized as predicates, then it
holds that

Vs Ve (enrolled(s, c) = student(s) A course(c)).

Baker: Do only students enroll in courses? | don’t think that's true.
Able: But that's what | mean bgtudent

Although theydo agree that the term “student” is an important domain concept, they
disagree on the meaning of this concept.

3.2. Basics of Ontology Construction During Requirements Engineering

The usefulness of an ontology as a requirements engineering product has already been
recognized. For example, Breitman and Sampaio do Prado Lelte [18] regard an applica-
tion ontology as one of the products of the requirements engineering activity. All method-
ologies for ontology construction listed in their work share the same basic steps as shown
in figure[1. Apart from validation and verification, these steps include identification of
information sources, identification of the list of terms, classification of the terms and
their description.

Besides these common steps, the various methodologies listed by Breitman & Sam-
paio do Prado Leite remain rather abstract in the sense that they do not spmeify
identify information sourcesjowto classify terms, and so on.

validation heuristics

UoiD LEL

classification and
indentification heuristics [‘I, \
validation
UociD

| VALIDATE | problems

/ LEL
elicitation ~ term

techniques selectio
heuristics
IDENTIFY information | e

INFORMATION | -Source list foprerj
SOURCES

verification
heuristics

checklist

UefD LEL

VERIFY
LEL

list of
terms

general

\—UfD/)) classification
ny IDENTIFY LIST

OF TERMS criteria

representation
heuristics

list of LEL
classified model| P8

CLASSIFY | terms
TERMS
N information source list

DESCRIBE LEL
\ UoiD TERMS

\ information source list

Figure 1. Ontology Construction Process (sour¢ei[18])

verification

However, if we consider ontology construction as an activity within the requirements
engineering process, the identification of the sources of information seems rather ob-
vious: the primary source of information are the requirements documents. For our sec-
ond example for employing ontologies in software engineering, i. €. re-engineering, two
sources of information have to be regarded: documentation of the software system and
its code itself.

The next section shows how we extract a domain ontology from textual documenta-
tion.

4. Ontology Extraction via Text Analysis

Text analysis can easily be introduced into the general ontology construction process
presented above. Figuré 2 depicts the activities needed to produce an ontology starting
from some documertis

“Parsing and subcategorization frames extraction” corresponds to the “identification
of the term list step” of figurg]1, “term clustering & taxonomy building” as well as “as-
sociation mining” correspond to “term classification”. Term validation and verification
will be addressed later (see sgc. 5).

Note, that we define ontology as a taxonomy enriched with associations. The tax-
onomy itself consists of a set of terms and the “is-a"-relation. The overall process of
ontology construction consists of four steps: term extraction, term clustering, taxonomy
building (as cluster hierarchy) and relation (aka association) mining.

1see[[21] for further details

Parsing and Term clustering, Assoc. mining
subcat. frames taxonomy building (KAON)
extraction (ASIUM) l

axonomy + ASsoC,

i
SER T

Elimination of
inconsistenci Elimination of
detected with inconsistencies
ASIUM detected with
KAON

Figure 2. Ontology Extraction Procedure [21]

Extraction of terms from requirements documents: To extract terms, each sentence
is parsed and the resulting parse tree is decomposed. Noun phrases that are related
to the verb of the sentence are extracted as domain concepts. For example, from
the sentence The control unit sends an alarm message in a
critical situation " “send” is extracted as the main verbgcdntrol
unit " as the subject anddlarm message " as the direct object.

Term clustering: The second step clusters related concepts. Two concepts are consid-
ered as related and put into the same cluster if they occur in the same grammatical
context. l.e., two terms are related in the following cases:

e They are subjects of the same verb.

e They are direct objects of the same verb.

e They are indirect objects of the same verb and are used with the same preposi-
tion.

For example, if the document contains two sentences like

1. “The control unit sends an alarm message in a critical situation”
2. “The measurement unit sends measurements results every 5 seconds”,

the conceptscontrol unit " and “measurement unit " are considered as
related, as well asdlarm message " and “measurements results

Taxonomy building: Concept clusters constructed in the previous step are used to build
the taxonomy by joining overlapping concept clusters. The emerging larger clus-
ters represent more general concepts. For example, the two clysiarsn
message , measurements results } and{control message ,measure-
ments results } are joined into the larger cluster

{alarm message, control message, measurements results }

because they share the common condemasurement results }. The new
joint cluster represents the more general concept of possible messages.

This step also aids in identifying synon){_?ﬂsecause synonyms are often con-
tained in the same cluster. For example, if a cluster contains lsagghdl ” and

2different names for the same concept

“message”, the domain analyst performing the ontology construction can iden-
tify them as synonyms.
Since manual construction of the taxonomy would be both cumbersome and error-
prone we use the tool ASIUM [22] for term clustering and taxonomy building.
Associations/relations mining: There is a potential association between two concepts if
they occur in the same sentence. Each potential association then has to be validated
by the requirements engineer before being recorded as an association between
concepts.
Note, that the validation of the association proposed by the association mining tool
automatically implies a validation of the requirements document. If the tool sug-
gests an association thedn notbe valid (i.e., a pair containing completely unre-
lated concepts), then we have detected an evidence that the requirements document
contains some inconsistent noise that must be eliminated_ (see [23] for an in—depth
treatment of association mining).
We use the tool KAON[23] during this step.

All techniques introduced but term extraction were developed separately from each
other for other purposes than requirements documents analysis. However, chaining these
separate techniques into a proper process and enriching them with term extraction results
is of great benefit for ontology extraction from requirements documents. The feasibility
of the approach described above was proven on two case studies, presented in [21].

5. Applying Ontology to Document Validation

The method introduced above extracts an ontology from natural language documents. It
is applicable to different kind of texts, such as requirements documents in new projects,
or user and developer documentation of existing software.

5.1. Dealing with Inconsistencies

One key feature of the introduced text analysis method is its interactivity. In each step the
analyst receives feedback allowing him to steer the construction. During the construc-
tion of concept clusters or overlaps the analyst may identify the content of the resulting
clusters as inconsistent. This indicates that some unrelated concepts were put into the
same cluster. Since such defects are not introduced by the extraction and clustering steps
themselves, the inconsistencies detected can and should be corrected in the original text
before the analysis continues, as illustrated in figfife 2

5.2. Terminology Validation After Extraction

The idea of iterative ontology extraction perfectly fits the Volere requirements engineer-
ing (RE) process [24]. According tD [24] virtually every RE process is built in a similar
way and runs through knowledge acquisition, writing the requirements document, re-
quirements validation and prototyping. Fig{ite 3 depicts a simplified Volere RE process.
Solid arrows stem from the original process, dashed arrows are the transitions that we
add in our approach to improve the validation phase.

3see[[21] for details on inconsistency detection and correction

8

[Trawl for knowledge]——[Write the specification]——[Validate]——[Analyze, Design, ...]—»

N T ~N S

Figure 3. Volere Requirements Engineering Process

According to the Volere RE—Process, the RE process starts out with a brainstorming
and refinement of the requirements until the requirements are ripe enough to be written
down. Obviously, the results of the brainstorming sessions must be validated after writing
them down. Robertson & Robertsan [24] list several validation goals, such as

e Completeness of each requirement
e Traceability
e Consistent terminology

The ontology extraction described in the previous section facilitates checking for consis-
tent terminology because inconsistent terminology becomes exposed in the text mining
phase as implausible concept clusters and associations.

As stated above, the standard Volere—Process had to be extended to accommodate
this kind of document validation: When inconsistent terminology is detected during text
mining, it has to be corrected before the construction of the ontology continues. This
feedback loop is marked by a dashed arc from “Validate” to “Write the specification”
in figure[3. As a result of this iteration the requirements document will only contain
consistent terminology by the moment ontology construction is finished. One could argue
that this iteration could go on for a long time which is correct from an abstract point
of view. In practice, applying this process has the pleasant side-effect to quickly teach
writers of requirements documents how to use consistent terminology.

Obviously, the same idea of document analysis and validation can be applied in
the case of software re-engineering. The only difference is that not the requirements
documents but any existing documentation can be analyzed.

5.3. Validating the Taxonomy and Associations

Obviously, the extracted ontology itself must also be validated. In contrast to the valida-
tion of the terminology, this validation step depends on the goal (requirements engineer-
ing vs. re-engineering) of the analysis.

In the case of requirements engineering there is no reference domain model for the
extracted domain ontology to be compared with. Thus, the ontology can only be vali-
dated via manual examination by a domain expert or via prototyping. Prototyping and
validation in the case of requirements will be discussed in section 6.1.

In the case of re-engineering or software maintenance there are more sources of
information than just the RE documentation. Another domain model can be extracted
from the existing code. In virtually any realistic situation, the implemented and the doc-
umented domain model will differ. Sectién 6.2 shows how the domain model extracted
from code can be compared with the ontology deduced from additional documentation
and how the results of this comparison can be used to improve both documentation and
code.

5.4. Ontology as a Document Validation Means: a Case Study

In one of our case studies we analyzed the steam boiler specification [1] to extract an on-
tology form it. This specification describes a control application whose aim is to support

[l steam measurement

Mz

N2
water level
display

Figure 4. The steam boiler systern [25]

required water level in a steam boiler. The steam boiler system consists of the following
units (see also Figufe 4, taken from [1]):

e the steam-boiler

e adevice to measure the quantity of water in the steam-boiler (“water level display”
in Figure[4)

e four pumps to provide the steam-boiler with water

e four devices to supervise the pumps (one controller for each pump) (“ctrl” in
Figure[4)

e a device to measure the quantity of steam which comes out of the steam-boiler
(“steam measurement” in Figuré 4)

e an operator desk (missing in Figiife 4)

e amessage transmission system (missing in Figure 4)

The system should provide the required water level even despite failures of some compo-
nents. Depending on the functioning components the system works in different operation
modes.

FigureB shows a manually constructed ontology for the steam boiler s&]ﬁ'tem.
shows the concepts introduced in the specification and a classification of these concepts.
The classification is explicitly introduced in the requirements document as well. The
concept classes are:

sent messages (messages sent by the control program)
received messages (messages received by the control program)
failures

operation modes

physical units

physical parameters

4Rectangular boxes represent concepts and hexagonal boxes represent relations between concepts. The very
common “is-a"-relation is shown by means of variable-width lines, the thin end pointing to the more general
concept and the thick end pointing to the less general one.

10

minimal norma...

pump controller e 10 meas
operator desk

message_level

fressage_stea..
Iressage_purm...

)
physical para. ..

device to meas._ i boiler]

message_pum
-
message trans

received mess...

I

-

degraded mode

opens
closes

operation mode rescue moce

signalizess
fmessage_open... message_level..

causes4d
MEssage_pur...
% water_level_m
message_cloge.
sighalizes -
pump_failure

Sent message Tailure

:
message_pum | i
:

‘ message_valve

message_pum... message_pum causes3
pump_contrall..
EET o S
— causes
signalizes2
signalizes4

Figure 5. Steam boiler ontology, manually constructed

Only few associations are explicitly stated in the requirements document. Fjgure 5 shows
three classes of them:

“signalizes” is an association between a hardware failure and a message signalizing this
failure.

“causes” is an association between a hardware failure and the operation mode caused
by this failure.

“opens/closes”are associations between messages controlling the pumps and the pumps
themselves.

Figure[6 shows a part of the ontology produced by the means of text analysis. The
diagram shows the ontology rodtgon:Root), four top-level conceptoperation
mode, failure , physical unit and message) with some of their subordi-
nate concepts and relations between them. For example, there are associations “Trans-
missionfailure causes emergensyopmode” and “Rescugnode iscausedoy wa-
ter_level. measuringunit_failure”.

When compared to the manually constructed ontology in Figure 5, the extracted on-
tology contains all the concept classes but “physical parameters”. The names of physical

11

message_purm. .

message_level..

rmessage_stearr
- message_level

message_stak
message_pum...

message_level...

Jmessage_open...

message_stea
= ge-

message_valve ksage_stea..

L

gersProgra...
7

message_level... message_pur..

message_pum...
message_physi...
[message_stof massage stea

isEnteredafter

iniialization_m

operation mode
7

degraded_moade

stearm_level_m...

pump _tailure

pump_contrall...
transenission_f

waiting _state
rescue_mode

efnergency_sto...
water_level_m..

L

Figure 6. Steam Boiler: part of the produced ontology

isCausedBy

parameters were not extracted as they occur solely in incomplete phrases (enumerations).
Extraction of concepts from incomplete phrases is not possible yet. For the same reason
two of the physical units were not extracted: “operator desk” and “message transmission
system”. These concepts are mentioned only once in the document and their role is not
further specified. A human reader would extract these two concepts, but would have to
guess how they interact with other components. This point can be seen both as a weak-
ness of the extraction technique and as an omission in the document: these two compo-
nents are also missing in the steam boiler simulator (Figure 4), programmed for the par-
ticipants of the formal methods contest, whose goal was to provide a formal steam boiler
specification. As for other concept classes (messages, operation modes and failures), the
approach succeeded in extracting all the concepts belonging to these classes.
Additionally to the concepts present in the original requirements document, opera-
tion mode “waiting state” was extracted from the revised document version. This concept
was added during document revision, as the original document contained some abstract
“state”, which was treated exactly in the same way as operation modes. The extracted

12

ontology contains also additional relations, like “messpgsgramready isSentin ini-
tializationmode” and “messagsteamboiler_waiting triggersProgramStain initializa-
tion_.mode”. These relations are sensible, but missing in the manually constructed ontol-
ogy.

To summarize, the presented approach to ontology extraction by the means of text
analysis is a powerful method, able to find flaws in requirements documents, to correct
them, and then to produce an application domain ontology.

6. Use Cases for Ontology Validation
6.1. Requirements Engineering: Ontology Validation via Prototyping

Is ontology extraction sufficient for document validation? Not really, because the ontol-
ogy itself could be flawed. It therefore has to be validated by a domain expert, first. For
this purpose, we convert the ontology into a domain specific model. “Domain specific”
means that the modelling technique is tailored to the needs of the application domain.
In one of our case studi€s [21] we used the formal method and tool AutoFQCUS [26]
to build the model domain for a distributed embedded control systems. AutoFOCUS
offers the following modelling concepts for distributed embedded systems specification:

hierarchically structured components

messages

typed channels (for message exchange)

automatons (as a component implementation) including states and state transi-
tions

The mapping of the ontology extracted from documents onto an AutoFOCUS do-
main model consists of two stefls:

1. Complete subtrees of the extracted taxonomy are mapped on AutoFOCUS con-
cepts. For example, one of the taxonomies extracted in the case study contained
the subtree “hardware”. Each leaf concept of this subtree was mapped to an
AutoFOCUS “Component”. The taxonomy also contained the subtree “failures”,
which was mapped to AutoFOCUS “States”, etc.

If two branches are non disjoint, one either has to map both of them onto the same
modelling concept or to descend to finer subtrees. The decision on which concept
to use for what subtree is context dependent and has to be made by the analyst.

2. The associations existing in the ontology are mapped onto the corresponding con-
nection concepts available in the formal model. These are communication chan-
nels for components and transitions between states for subtrees that were mapped
onto states.

The result of this modelling is a formal model of the system specified by the re-
quirements document. Note, that due to the automated terminology extraction and the
mechanical construction of the ontology, this formal model resembles the system speci-
fied by the requirements documents without being biased from misinterpretations of the
software engineer or forgotten resp. ignored statements in the documents.

Smapping to AutoFOCUS is presented in more detailin [27]

13

In case of AutoFOCUS, this model is even executable representing a prototype of the
target system. This prototype in turn is an excellent means to validate the ontology itself
because it allows a domain expert to check whether all the intended states, components,
transitions, etc. are in place and behave as expected. A failure of this validation represents
a flaw in the ontology which is most likely due to an inconsistency or incompleteness of
the original requirements document!

For example, consider Figurgps 7 4rjd 8. The former one represents the components
and channels generated from the ontology shown in F[gure 6, while the latter represents
the generated states and state transitions for the “comtitl. The state transition di-
agram is obviously incomplete. This is due to the fact that the relations between corre-
sponding states are missing in the ontology. The associations, in turn, are missing just
because the state are never explicitly mentioned in the same sentence. Thus, missing
state transitions in the resulting AutoFOCUS model indicate lack of explicitness in the
requirements document.

[rootcomponent 77
InpUtPor 14 InpUtPor 20
urmp_controlle Channef3:: "P contral_unit E Channe) f1g
@ putFoTL watePlevel_measuring_unit
oha el InputPort 17 S 4
» e
outputPort10: Inputart23:n putPhne Channell:
a Chahnels
G2 outpuLPort7::
thutPart16: e
iy stearr| level_measurinfi_unit
|

Figure 7. Component network, converted from the steam boiler ontology in Fjdure 6

—
O [montState Z2zzi s e E
emergency_stop_mode steam_level_measuring_unit_failure rescue_mode
transmission_failure erroneous_transmission water_level_measuring_unite_failure
initialization_mode pump _controller_failure waiting _state
normal_mode pump _failure degraded_mode
I}
Please change the mode

Figure 8. The automaton for “contralinit”, converted from the steam boiler ontology in Figfife 6

14

[Analyze Documentation

)\\{ Compare & Validate]—»[Analyze, Re—Design,]_.

[Analyze Code = N

Figure 9. Knowledge acquisition process, adapted to several information sources

6.2. Re-Engineering: Ontology Comparison

Similar to requirements engineering, software re-engineering can usually only be accom-
plished after a sound domain knowledge has been gained. However, in opposite to re-
guirements engineering there is more than one relevant source of information. In addi-
tion to the documentation, the program code is another, an even more important source
of domain information. As the code and the documentation are frequently changed inde-
pendently after roll-out, the documented and the implemented domain model are hardly
ever consistent but differ from each other. Thus, to validate the ontology extracted from
the documentation, it is necessary to compare it to the ontology implemented in program
code or vice versa.

The availability of more than one source of information entails minor changes to
the process of knowledge acquisition. Figufe 9 shows ontology extraction from two dif-
ferent sources. Now, validation is done by comparing different ontologies and not via
prototyping.

To compare the documented and the implemented domain model, it is necessary to
extract a domain model from the program code. In the case of object-oriented (OO) code,
a significant portion of the concept hierarchy is explicitly coded with the class hierarchy
induced by inheritance and associations. In non-OO code other structural dependencies,
such as modules, file and directory structure, #imtlude directives must be taken
into concern. For simplicity, we assume an OO programming model, here.

In [28], we have shown, how concise and consistent naming within the program code
can be achieved and preserved during software development and maintenance. Here,
require concise naming of identifiers within the code and continue this line of thought by
using the names of the identifier as the starting point for term extraction. The associations
between the concepts — i.e. classes — are extracted from the inheritance hierarchy and
associations among classes.

Note, that the ontology build from code will comprise domain concepts as well as
technical concepts, as for example classes used for file or database access. To be able to
compare this ontology with an ontology build from domain only documentation, the do-
main concepts must be separated from the technical concepts. Ontology comparison met-
rics, such as introduced by Maedche and Staab [29], can cater for such “add-ons” when
measuring ontology similarities. The defined metrics are asymmetric, so it is possible to
see whether the documented ontology is covered by the implemented ontology.

The following list defines ontology similarity measures adapted to the comparison
of ontologies extracted from documentation and program code.

Lexical comparison: Lexical comparison is based on the edit distancé [30] measuring
the minimal number of insertions, deletions and substitutions necessary to convert
one string into another. For example, the edit distance between “toy example” and

15

“toy-examples” is 2. On the basis of the edit distance Maedche and Staab define
string similarity of the two string$,; andL;:

in(|L;|,|L;|) — EditDe L. L.
StrSim = max (0, min(| L], | L,|) ditDistance(L;, 7))

min(|L;|,|L;|)

The string similarity measurgtrSim returns values between 0 and 1; 0 meaning
completely different, 1 for match. Lexical ontology similarity of two ontologies
built on lexiconsC; and .- is defined as

1

LexSim (L, Ly) = m L;ﬁ LI?EE%Z(Z(StT’SZm(Li,Lj))

The lexical similarity measurezSim is asymmetric, which is necessary for com-
parison of the documented and the implemented ontology:
LexSim(DocumentedLezicon, ImplementedLexicon) measures whether every
documented concept is implemented. Surely, one should expect that the imple-
mented ontology contains more concepts. However, it is suspicious, if the docu-
mented concepts are missing in the implementation.

Taxonomy comparison: Taxonomy similarity measures whether the sub- and supercon-
cepts of a certain concept coincide in two ontologies. i etenote the taxonomic
(hierarchical) part of the ontology and 18upSub(L,H) be the set of sub- and
superconcepts df in the hierarchy{. Taxonomic overlap of two hierarchies with
respect to the ternh is defined as

_|SupSub(L, H1) N SupSub(L, Ho)|

TO(L = '
O(L,H1,Hs) | SupSub(L, Hy) U SupSub(L, Hs)|

The average value measures the extent to that the documented and the implemented
hierarchies agree.

— 1

TO(My Ha) = g Y TO(L, H1, Ha)
‘£1| LeLly

This metric is asymmetric, just like the lexical similarity metric.
TO(DocumentedHierarchy, ImplementedHierarchy) measures whether the doc-
umented concept hierarchy (extracted as cluster hierarchy) is correctly imple-
mented.

Relation comparison: The relation similarity metric defined by Maedche and Staab [29]
is rather complicated though this complexity is dispensable for ontologies ex-
tracted from code. It caters for relations with arbitrary domain and range but the
relationships at the class level of OO code are restricted: Each relation connects
just two classes. Note, that the relations extracted from the text are binary as well
(see sectiop]4 of [21] for details). Thus, to compare relations, a simpler metric can
be used.

Let £, andL5 be two lexicons and let the lexicons be sorted in such a way that for
all i the concept.y; corresponds to the concept;. This correspondence can be
established for example by the means of the lexical similarity measure. Given the
sets of non-taxonomic relatiorf8; andR, as parts of the extracted ontologies,

16

it is easy to determine the coinciding relations, i. e. the relations connecting the
corresponding terms. With this the relational overlap of two ontologies can be
computed as follows:

— Number of coinciding relations
RO(R1, Ra) = T

Again, this metric is asymmetric.
RO(DocumentedRelations, ImplementedRelations) exposes whether all the
documented relations are implemented.

These ontology similarity metrics deliver valuable information to software maintainers
by giving an estimate on how large the discrepancies between documentation and code
are. In other words, these numbers reflect the reliability of the information contained in
the documentation.

In the case that the similarity measures are high enough (it is up to the analyst to
define what “high enough” means) they also validate the extracted domain ontology.

7. Summary

The ontology based validation method presented in this paper tackles a crucial tasks in
various software engineering activities: validation of the terminology. Two example sce-
narios that could benefit from this approach are requirements engineering and software
maintenance.

The starting point of this ontology construction is an analysis of the available docu-
ments. However, as experience shows, the documents, especially the requirements docu-
ments, are usually inconsistent. Thus, detection of inconsistencies has predominant im-
portance if the ontology is to provide any value.

The iterative text analysis approach presented in this paper performs both tasks: it
extracts the terminology and gives feedback to the analyst, enabling him to discover
inconsistencies. After elimination of these inconsistencies the domain ontology is built
and can be used #secommon language for all the stakeholders in further project phases.

In order that become actually useful, the ontology gets validated. In the case of
requirements engineering the validation is performed via prototyping, in the case of re-
engineering the ontology extracted from documents is validated by comparing it with
another ontology extracted from the actual program code.

Term extraction, ontology construction and validation all together are combined into
an integrated process that delivers a valuable tool to counter inconsistencies in docu-
mentation and code which are a frequent source of misunderstandings during software
development and subsequent errors in the resulting products.

References

[1] Abrial, J.R., Birger, E., Langmaack, H.: The steam boiler case study: Compe-
tition of formal program specification and development methods. In Abrial, J.R.,
Borger, E., Langmaack, H., eds.: Formal Methods for Industrial Applications. Volume
1165 of LNCS., Springer—Verlag (1996jtp://www.informatik.uni-kiel.de/
“procos/dag9523/dag9523.html

http://www.informatik.uni-kiel.de/~procos/dag9523/dag9523.html
http://www.informatik.uni-kiel.de/~procos/dag9523/dag9523.html

17

[2] Sneed, H.M.: Object-oriented cobol recycling. In: WCRE '96, IEEE Computer Society
(1996) 169

[3] Pigoski, T.M.: Practical Software Maintenance. Wiley Computer Publishing (1996)

[4] Ben Achour, C.: Linguistic instruments for the integration of scenarios in requirement engi-
neering. In Cohen, P.R., Wahlster, W., eds.: Proceedings of the Third International Workshop
on Requirements Engineering: Foundation for Software Quality (REFSQ’97), Barcelona,
Catalonia (1997)

[5] Aussenac-Gilles, N.: Supervised Learning for Ontology and Terminology Engineering. In
Kushmerick, N., Ciravegna, F., Doan, A., Knoblock, C., eds.: machine Learning for the Se-
mantic Web, Dagstuhl seminar, Dagstuhl (Germany). (2005)

[6] Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction finder for
use in requirements elicitation. Automated Software End.997) 375-412

[7] Abbott, R.J.: Program design by informal English descriptions. Communications of the ACM
26(1983) 882—-894

[8] Chen, P.: English sentence structure and entity-relationship diagram. Information Sdiences
(1983) 127-149

[9] Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity Resolution.
PhD thesis, Institute for Research in Cognitive Science, University of Pennsylvania (1998)

[10] Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. Technical Report
S2K-92-09 (1992)

[11] Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings of the 37th an-
nual meeting of the Association for Computational Linguistics on Computational Linguistics,
Morristown, NJ, USA, Association for Computational Linguistics (1999) 57—64

[12] Degeratu, M., Hatzivassiloglou, V.: Building automatically a business registration ontology.
In: The Second National Conference on Digital Government (dg.o 2002), LA, CA. (2002)

[13] Lame, G.: Using nlp techniques to identify legal ontology components: Concepts and rela-
tions. In: Law and the Semantic Web. (2003) 169-184

[14] Zhou, L., Booker, Q., Zhang, D.: Toward rapid ontology development for underdeveloped
domains. In: HICSS '02: Proceedings of the 35th Annual Hawaii International Conference
on System Sciences (HICSS’02)-Volume 4, Washington, DC, USA, IEEE Computer Society
(2002) 106

[15] Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English (ACE) language
manual, version 3.0. Technical Report 99.03, Department of Computer Science, Univer-
sity of Zurich (1999)http://www.ifi.unizh.ch/attempto/publications/
papers/ace3 manual.pdf , accessed 21.05.2004.

[16] Gervasi, V., Nuseibeh, B.: Lightweight validation of natural language requirements: a case
study. In: 4th International Conference on Requirements engineering, IEEE Computer Soci-
ety Press (2000) 140-148

[17] Ambriola, V., Gervasi, V.: Experiences with domain-based parsing of natural language re-
quirements. In Fliedl, G., Mayr, H.C., eds.: Proc. of the 4th International Conference on Ap-
plications of Natural Language to Information Systems. Number 129 in OCG Schriftenreihe
(Lecture Notes) (1999) 145-148

[18] Breitman, K.K., Sampaio do Prado Leite, J.C.: Ontology as a requirements engineering prod-
uct. In: Proceedings of the 11th IEEE International Requirements Engineering Conference,
IEEE Computer Society Press (2003) 309-319

[19] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edition edn. Prentice-
Hall, Englewood Cliffs, NJ (2003)

[20] zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw.
Eng. Methodol6 (1997) 1-30

[21] Kof, L.: An Application of Natural Language Processing to Domain Modelling — Two Case
Studies. International Journal on Computer Systems Science Engin2e1{pg05) 37-52

[22] Faure, D., Ndellec, C.: ASIUM: Learning subcategorization frames and restrictions of se-

http://www.ifi.unizh.ch/attempto/publications/papers/ace3_manual.pdf
http://www.ifi.unizh.ch/attempto/publications/papers/ace3_manual.pdf

18

lection. In Kodratoff, Y., ed.: 10th European Conference on Machine Learning (ECML 98) —
Workshop on Text Mining, Chemnitz Germany (1998)

[23] Maedche, A., Staab, S.: Discovering conceptual relations from text. In W.Horn, ed.: ECAI
2000. Proceedings of the 14th European Conference on Artificial Intelligence, Berlin, 10S
Press, Amsterdam (2000) 321-325

[24] Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison—Wesley (1999)

[25] Abrial, J.R., Birger, E., Langmaack, H.: Formal Methods for Industrial Applications: Speci-
fying and Programming the Steam Boiler Control. Volume 1165 of LNCS. Springer—\Verlag
(1996)

[26] The AutoFocus Homepage: (200#jtp://autofocus.in.tum.de/index-e.
html | accessed 21.02.2004.

[27] Kilitni, A.: Textanalyse @ir Requirements Engineering: Konvertierung der Analyseergebnisse
nach AutoFOCUS (2004) Technische UniveisiMunchen, Fakudt fur Informatik, Syste-
mentwicklungsprojekt.

[28] DeiRenlidick, F., Pizka, M.: Concise and consistent naming. In: Proceedings of the 13th
International Workshop on Program Comprehension, St. Louis, Missouri, USA, IEEE CS
Press (2005)

[29] Maedche, A., Staab, S.: Measuring similarity between ontologies. In: EKAW '02: Proceed-
ings of the 13th International Conference on Knowledge Engineering and Knowledge Man-
agement. Ontologies and the Semantic Web, Springer-Verlag (2002) 251-263

[30] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Cybernetics and Control Theofy) (1966) 707-710

http://autofocus.in.tum.de/index-e.html
http://autofocus.in.tum.de/index-e.html

