
An Activity-Based Quality Model for Maintainability

F. Deissenboeck, S. Wagner, M. Pizka
Institut für Informatik

Technische Universität München
Boltzmannstr. 3

85748 Garching b. München, Germany
{deissenb,wagnerst,pizka}@in.tum.de

S. Teuchert, J.-F. Girard
MAN Nutzfahrzeuge AG

Elektronik Regelungs- und Steuerungssysteme (TSE)
Dachauer Strasse 667

80995 München, Germany
{stefan.teuchert,jean-francois.girard}@man.eu

Abstract

Maintainability is a key quality attribute of successful
software systems. However, its management in practice is
still problematic. Currently, there is no comprehensive ba-
sis for assessing and improving the maintainability of soft-
ware systems. Quality models have been proposed to solve
this problem. Nevertheless, existing approaches do not ex-
plicitly take into account the maintenance activities, that
largely determine the software maintenance effort. This
paper proposes a 2-dimensional model of maintainability
that explicitly associates system properties with the activi-
ties carried out during maintenance. The separation of ac-
tivities and properties facilitates the identification of sound
quality criteria and allows to reason about their interdepen-
dencies. This transforms the quality model into a structured
and comprehensive quality knowledge base that is usable in
industrial project environments. For example, review guide-
lines can be generated from it. The model is based on
an explicit quality metamodel that supports its systematic
construction and fosters preciseness as well as complete-
ness. An industrial case study demonstrates the applicabil-
ity of the model for the evaluation of the maintainability of
Matlab Simulink models that are frequently used in model-
based development of embedded systems.

1. Introduction

Virtually any software dependent organization has a vital
interest in reducing its spending for software maintenance
activities. In addition to financial savings, for many orga-
nizations, the time needed to complete a software main-
tenance task largely determines their ability to adapt their
business processes to changing market situations or to im-
plement innovative products and services. That is to say that
with the present yet increasing dependency on large scale
software systems, the ability to change existing software in

a timely and economical manner becomes critical for nu-
merous enterprises of diverse branches. The term most fre-
quently associated with this is maintainability. But what
is maintainability? An often cited definition is: The effort
needed to make specified modifications to a component im-
plementation.1

This nicely illustrates that the desire for high maintain-
ability is really a desire for low maintenance efforts. How-
ever, current approaches to assess and improve maintain-
ability fail to explicitly take into account the cost factor that
largely determines software maintenance efforts: the activ-
ities performed on the system or more precisely, the asso-
ciated personnel costs. Considering the diverse nature of
activities, such as “problem understanding” and “testing”,
it becomes evident, that the criteria that actually influence
the maintenance effort are numerous and diverse. Psycho-
logical effects, such as the broken window [26] deserve just
as much attention as organizational issues (e. g. personnel
turnover) or properties of the code. Any of these aspects
may have a significant and vastly independent impact on
the future maintenance effort.

We regard the omission of activities as a serious flaw not
only due to the activities’ major importance for the overall
maintenance effort but also because the activities provide
a natural criterion for the decomposition of maintainability
that many existing approaches lack.

Problem Although maintainability is a key quality at-
tribute of large software systems, existing approaches to
model maintainability have not created a common under-
standing of the factors influencing maintainability and their
interrelations. Hence, no comprehensive basis for assessing
and improving the maintainability of large software systems
has been established so far.

Typically, existing models exhibit at least one of the

1SEI Open Systems Glossary (http://www.sei.cmu.edu/
opensystems/glossary.html)

following problems: First, they do not decompose the at-
tributes and criteria to a level that is suitable for an actual
assessment. Second, these models tend to omit the rationale
behind the required properties of the system. Third, existing
models often use heterogeneous decomposition dimensions,
e. g. the required criteria mix properties of the system with
properties of the activities carried out on the system.

The first problem constrains the use of these models as
the basis for analyses. The second one makes it difficult
to describe impacts precisely and therefore to convince de-
velopers to use it. The third problem leads to inconsistent
models and hampers the revelation of omissions and incon-
sistencies in these models.

Contribution This paper proposes a 2-dimensional
model of maintainability that explicitly associates system
properties with the activities carried out during maintenance
and thereby facilitates a structured decomposition of main-
tainability. The separation of activities and properties facil-
itates the identification of sound quality criteria and allows
to reason about their interdependencies. As the activities
are the main cost factor in software maintenance, we con-
sider this separation a first step towards the ultimate goal
of a truly economically justified practice of maintainabil-
ity engineering. The model is based on an explicit qual-
ity metamodel that supports a systematic construction of
a maintainability model and fosters preciseness as well as
completeness.

Next to the ability to explicitly describe the impact of
system properties on the maintenance activities, several ad-
ditional benefits can be realized by using the model:

1. The model provides a central storage of quality defini-
tion, comparable to a knowledge base, that serves as a
basis for the automatic generation of guideline docu-
ments for specific maintenance tasks as well as for the
analysis of system artifacts.

2. The model allows to reveal omissions and contradic-
tions in current models and guidelines.

We demonstrate the applicability of the 2-dimensional
model in a case study undertaken with MAN Nutz-
fahrzeuge, a German supplier of commercial vehicles and
transport systems. Here we created a comprehensive model
of the maintainability of Matlab Simulink models that are
frequently used in model-based development of embedded
systems. The study lead to the inclusion of the model into
the MAN standard development process.

2. Related Work

To be read conveniently the related work is categorized
as guidelines-based approaches, metrics-based approaches,

quality models and process-based approaches.

Guidelines A commonly applied practice are guidelines
that state what developers should do and what they should
not do in order to improve the quality of software artifacts.
Such guidelines are usually composed by the software-
developing companies itself or by tool providers, e. g.
the Java Coding Conventions provided by Sun Microsys-
tems [24].

Unfortunately, such guidelines typically do not achieve
the desired effect as developers often read them once, tuck
them away at the bottom of a drawer and follow them in
a sporadic manner only. According to our experience [3],
this is often due to the fact that guidelines fail to motivate
the required practices or provide very generic explanations,
e. g. “Respecting the guideline ensures readable models”
in [18]. Justification could be provided by explaining how
conformance/non-conformance to guidelines effects main-
tenance activities and thereby maintenance effort.

In addition to this, guidelines are often not followed sim-
ply because it is not checked if they are followed or not.
This is all the more unfortunate as for some guidelines rules
compliance could be assessed automatically.

Metrics-based Approaches Several groups proposed
metrics-based methods to measure attributes of software
systems which are believed to affect maintenance, e. g.
[1, 4]. Typically, these methods use a set of well-known
metrics like lines of code, Halstead volume [10], or Mc-
Cabe’s Cyclomatic Complexity [19] and combine them into
a single value, called maintainability index by means of sta-
tistically determined weights.

Although such indices may indeed often expose a cor-
relation with subjective impressions and economic facts of
a software system, they still suffer from serious shortcom-
ings. First, they do not explain in which way system prop-
erties influence the maintenance activities and thereby the
overall maintenance efforts. This makes it hard to convey
their findings to the developers.

Second, they focus on properties which can be measured
automatically by analyzing source code and thereby limit
themselves to syntactic aspects. However, many essential
quality issues, such as the usage of appropriate data struc-
tures and meaningful documentation, are semantic in nature
and can inherently not be analyzed automatically.

Because of this, most known metrics, such as the Cy-
clomatic Complexity, are neither sufficient nor necessary to
indicate a quality defect. Therefore, individual metrics or
simple indices provide only a poor basis for effective qual-
ity assessments.

Quality Modeling A promising approach developed for
software quality in general are quality models which aim

2

at describing complex quality criteria by breaking them
down into more manageable sub-criteria. Such models
are designed in a tree-like fashion with abstract quality at-
tributes like maintainability or reliability at the top and
more concrete ones like analyzability or changeability on
lower levels. The leaf factors are ideally detailed enough
to be assessed with software metrics. This method is
frequently called the decompositional or Factor-Criteria-
Metric (FCM) approach and was first used by McCall [20]
and Boehm [2].

Nevertheless, these and more recent approaches like [7,
12, 16, 21] have failed to establish a broadly acceptable ba-
sis for quality assessments so far. We believe this is due
to the lack of a clearly defined decomposition criterion that
leads to a “somewhat arbitrary selection of characteristics
and sub-characteristics” [13, 14]. Moreover, we see their
fixed number of model levels as a problem. For example,
FCM’s 3 level structure is inadequate. Breaking down high
level goals like maintainability into assessable properties
leads to a loose connection between criteria and metrics.

Similar to other approaches, quality models do usually
not model the maintenance activities explicitly. Hence, they
are not directly capable of explaining how system properties
influence the maintenance effort.

Processes and Process Models Organizational issues are
typically covered by process-based approaches to software
quality like the ISO 9000 standards or CMM [22]. Unfor-
tunately, there is the widely disputed misconception, that
good processes automatically guarantee high quality prod-
ucts [14]. Of course, processes are of high importance and
they determine reproducibility of the development process.
However, the quality of the outcome still strongly depends
on the actual criteria, skills, and tools used during develop-
ment.

Discussion Garvin describes in [9] quality as a “com-
plex and multifaceted concept” and discusses different but
equally valid perspectives on the subject. We consider these
different perspectives and the inherent complexity of qual-
ity itself the reason for the variety of different approaches
discussed above. Consequently, there is an abundance of
further highly valuable work on software quality in general
and maintainability in particular that we do not explicitly
mention here, as it is either out-of-scope or does not funda-
mentally differ from the work already mentioned.

Although this has been and continues to be a very active
field of research, we argue that existing approaches to assess
and improve software maintainability generally suffer from
one or more of the following shortcomings:

1. Assessability. Most quality models contain a number
of criteria that are too coarse-grained to be assessed

directly.

2. Justification. Additionally, most existing quality mod-
els fail to give a detailed account of the impact that
specific criteria (or metrics) have on software mainte-
nance.

3. Homogeneity. Due to the lack of a consistent criterion
of decomposition most existing models exhibit inho-
mogeneous sets of quality criteria.

4. Operationalization. Most times, quality models are
expressed in prose and graphics only. They accompany
the development process in the form of documents but
are not made an integral artifact that is tightly coupled
with the quality assurance activities.

3. Maintainability Model

To address the problems of quality models described in
the previous section we developed a novel 2-dimensional
quality model. The initial version of the model was devel-
oped in the context of a commercial project in the field of
telecommunication [3]. As the analyzed system was large
(3.5 MLOC2 C++, COBOL, Java), 15 years old and under
active maintenance with 150 change requests per year it was
well suited for an application of our quality model.

In contrast to other quality models that are expressed in
terms of prose and graphics only, our maintainability model
is truly integrated in the software development as basis of
all quality assurance activities. As Fig. 1 shows, the model
can be seen as project- or company-wide quality knowledge
base that centrally stores the definition of quality in a given
context. Of course, an experienced quality engineer is still
needed for designing the quality models and enforcing them
with manual review activities. However, he can rely on a
single definition of quality and is supported by the auto-
matic generation of guidelines. Moreover, quality assess-
ment tools like static analyzers that automatically assess ar-
tifacts can be directly linked to the quality model and do not
operate isolated from the centrally stored definition of qual-
ity. Consequently, the quality profiles generated by them
are tailored to match the quality requirements defined in the
model. We refer to this approach as model-based quality
controlling.

The following sections explain the basic concepts of our
model and discuss the differences to classical hierarchical
models.

3.1. Hierarchical Models

The idea of explicitly modeling maintenance activities
was based on our experiences with building large hierarchi-

2million lines of code

3

Guide-
line

Quality Model

generates

Quality-
Profile

generates

Quality
Engineer

Analysis
Tool

Source
Code

adheres to

reads

reviews

analyzes

interprets

defines

configures

designs

Figure 1. Model-Based Quality Controlling

cal quality models. In turn of this process it became harder
and harder to maintain a consistent model that adequately
describes the interdependencies between the various quality
criteria. A thorough analysis of this phenomenon revealed
that our model and indeed most previous models mixed up
nodes of two very different kinds: maintenance activities
and characteristics of the system to maintain. An example
for this problem is given in Fig. 2 which shows the main-
tainability branch of Boehm’s Software Quality Character-
istics Tree [2].

Maintainability

Modifiability

Testability

Understandability

Augmentability

Structuredness

Communicativeness

Accessibility

Self-Descriptivness

Conciseness

Legibility

Figure 2. Software Quality Tree

Though (substantivated) adjectives are used as descrip-
tions, the nodes in the gray boxes refer to activities whereas
the uncolored nodes describe system characteristics (albeit
very general ones). So the model should rather read as:
When we maintain a system we need to modify it and this
activity of modification is (in some way) influenced by the
structuredness of the system. While this difference may not
look important at first sight, we claim that this mixture of
activities and characteristics is at the root of most problems
encountered with previous models. The semantics of the
edges of the tree is unclear or at least ambiguous because of
this mixture. And since the edges do not have a clear mean-
ing they neither indicate a sound explanation for the relation
of two nodes nor can they be used to aggregate values.

As the actual maintenance efforts strongly depend on
both, the type of system and the kind of maintenance ac-

tivity, it should be obvious that the need to distinguish be-
tween activities and characteristics becomes not only clear
but imperative. This can be illustrated by the example of
two development organizations where company A is re-
sponsible for adding functionality to a system while com-
pany B’s task is merely fixing bugs of the same system just
before its phase-out. One can imagine that the success of
company A depends on different quality criteria (e. g. ar-
chitectural characteristics) than company B’s (e. g. a well-
kept bug-tracking system). While both organizations will
pay attention to some common attributes such as documen-
tation, A and B would and should rate the maintainability
of S in quite different ways because they are involved in
fundamentally different activities.

Focusing on the individual factors that influence produc-
tivity within a certain context widens the scope of the rele-
vant criteria. A and B’s productivity is not only determined
by the system itself but by a plethora of other factors which
include the skills of the engineers, the presence of appropri-
ate software processes and the availability of proper tools
like debuggers. To clarify that our observations are not lim-
ited to the software system itself, we refer to the situation
instead of the software system from now on. Similar to the
software system that can be decomposed in components, the
situation can be decomposed in, what we call facts.

3.2. An Activity-Based Model for Maintainability

The consequent separation of activities and facts leads
to a new 2-dimensional quality model that regards activities
and facts as first-class citizens for modeling maintainability.

The set of relevant activities depends on the particular
development and maintenance process of the organization
that uses the quality model. As an example, we use the
IEEE 1219 standard maintenance process [11]. Its activity
breakdown structure is depicted in Fig. 3. For the sake of
brevity we only show a subset of the activities.

Analysis

Implementation

Testing

Delivery

Coding

Integration

Unit Testing

Integration Testing

Preparation

Installation

Impact Analysis

Identify Elements
To Modify

Maintenance

Figure 3. Example Activities

The 2nd dimension of the model, the facts of the situ-
ation, are modeled similar to an FCM model but without
activity-based nodes like augmentability. It is important to

4

understand, that we do not limit this dimension to properties
of the software system, e. g. structuredness, but try to cap-
ture all factors that affect one or more activities. An excerpt
of a facts tree is shown in Fig. 4.

Situation

Infrastructure

Organization

Product

Tools

Knowledge Base

Fluctuation

Skills

Documentation

Dynamics

Static Aspects

Figure 4. Example Facts

Obviously, the granularity of the facts shown in the dia-
grams are too coarse to be actually evaluated. We follow the
FCM approach in the situation tree by breaking down high
level facts into detailed, tangible ones which we call atomic
facts. An atomic fact is a fact that can or must be assessed
without further decomposition either because its assessment
is obvious or there is no known decomposition.

To achieve or measure maintainability in a given project
setting we now need to establish the interrelation between
facts and activities. Because of the tree-like structures of
activities and facts it is sufficient to link atomic facts with
atomic activities. This relationship is best expressed by a
matrix as depicted in the simplified Fig. 5.

Maintenance

Modifi-
cationCodingConcept-

Location
Impact-
Analysis

ImplementationAnalysis

Concurrency

Recursion

Debugger

Refactoring

Identifiers

Cloning

Code Format

Dy
na

m
ics

St
at

ic
As

pe
ct

s
To

ol
s

In
fra

str
uc

t.
Pr

od
uc

t

Sit
ua

tio
n

Figure 5. Maintainability Matrix

The matrix points out what activities are affected by
which facts and allows to aggregate results from the atomic
level onto higher levels in both trees because of the unam-
biguous semantics of the edges. So, one can determine that
concept location is affected by the names of identifiers and
the presence of a debugger. Vice versa, cloned code has
an impact on two maintenance activities. The example de-
picted here uses a Boolean relation between facts and ac-
tivities and therefore merely expresses the existence of a

relation between a fact and an activity. To express differ-
ent directions and strengths of the relations, more elaborate
scales can be used here. Below, we show the application
of a three-valued scale that proved to be sufficient for our
current work.

The aggregation within the two trees provides a simple
means to cross-check the integrity of the model. For exam-
ple, the sample model in Fig. 5 states, that tools do not have
an impact on coding, which is clearly nonsense. The prob-
lem lies in the incompleteness of the depicted model, that
does not include tools like integrated development environ-
ments.

3.3. Attributes & Impacts

We found that a fine-granular decomposition of the sit-
uation (the facts tree) inevitably leads to a high number of
repetitions as the same properties apply to different kind of
artifacts. For example, consistency is obviously required for
identifier names as well as for the layout of the documenta-
tion.

Therefore our model further decomposes facts into enti-
ties and attributes where entities “are the objects we observe
in the real world” and attributes are “the properties that an
entity possesses” [15]. Hence, entities describe a plain de-
composition of the situation. Examples are documentation,
classes, variables or the available infrastructure. Entities
are associated with one or more attributes like consistency,
redundancy, completeness or superfluousness.

So, the facts defined in the facts tree are actually tu-
ples of entities and attributes: [Entity e | ATTRIBUTE A]. They
describe properties of the situation that are desired or un-
desired in the context of maintainability. Examples are
[Identifiers | CONSISTENCY], [Documentation | COMPLETENESS]
or [Debugger | EXISTENCE] that simply describes the presence
or absence of a debugging tool.

Note that the separation of entities and attributes does
not only reduce redundancy but allows for a clean decom-
position of the situation. This can be illustrated by an
example of the quality taxonomy defined in [21]: System
Complexity. As System Complexity appears too coarse-
grained to be assessed directly, is desirable to further de-
compose this element. However, the decomposition is dif-
ficult as the decomposition criterion is not clearly defined,
i. e. it is not clear what a subelement of System Complex-
ity is. A separation of the entity and the attribute as in
[System | COMPLEXITY] allows for a cleaner decomposition as
entities themselves are not valued and can be broken up in
a straightforward manner, e. g. in [Subsystem | COMPLEXITY]
or [Class | COMPLEXITY].

Impacts Using the notation introduced for facts we can
elegantly express the impact a fact has on an activity with

5

a three-valued scale where ‘+’ expresses a positive and ‘−’
a negative impact (the non-impact is usually not made ex-
plicit):

[Entity e | ATTRIBUTE A]
+/−−→ [Activity a]

Examples are [Debugger | EXISTENCE] +−→ [Fault Diag-
nostics], that describes that the existence of a debug-
ger has a positive influence on the activity fault di-
agnostics. [Identifiers | CONSISTENCY] +−→ [Concept Lo-
cation] describes that consistently used identifier names
have a positive impact on the concept location activity.
[Variable | SUPERFLUOUSNESS] −−→ [Code Reading] describes
that unused variables hamper the reading of the code. To
overcome the problem of unjustified quality guidelines each
impact is additionally equipped with a detailed description.

Assessment Obviously, the facts are the elements of the
model that need to be assessed in order to determine the
maintainability (or maintenance effort) of a situation. Since
many important facts are semantic in nature and inherently
not assessable in an automatic manner, we carefully distin-
guish three fact categories:

1. Facts that can be assessed or measured with
a tool. An example is an automated check
for switch-statements without a default-case
([Switch Statement | COMPLETENESS]).

2. Facts that require manual activities; e. g. reviews.
An example is a review activity that identi-
fies the improper use of data structures ([Data
Structures | APPROPRIATENESS]).

3. Facts that can be automatically assessed to a limited
extent requiring additional manual inspection. An ex-
ample is redundancy analysis where cloned source
code can be found with a tool but other kinds of re-
dundancy must be left to manual inspection ([Source
Code | REDUNDANCY]).

3.4. The Quality Metamodel

Although most quality models conform to an implicitly
defined metamodel they usually lack an explicitly specified
metamodel that precisely defines the set of legal model in-
stances. In contrast to this, our model is based on the ex-
plicit quality metamodel QMM. This metamodel consists of
the elements discussed above: entities, attributes, facts, ac-
tivities and impacts. For space reasons we do not explain
this metamodel in detail but present a UML class diagram
that illustrates the different model elements and their inter-
play (Fig. 6). Please note, that the figure shows only the
core elements and omits details like the explanation texts

that are associated with each element. Moreover, it does not
show that the model features a generalization mechanism
that allows attribute inheritance. It is, for example, possi-
ble to specify an attribute SUPERFLUOUSNESS for the entity
Component and inherit it to the entity Class.

The benefit of an explicit metamodel is twofold: First, it
ensures a consistent structure of quality models. Second, it
is a necessary basis for modeling tool support as described
in the next section.

• manual
• automatic
• semi-automatic

AssessmentType
«enumeration»

Attribute

Activity

Entity

Fact Impact
type hasImpact on

Figure 6. The Quality Metamodel QMM

3.5. Tool Support

Comprehensive maintainability models typically contain
several hundred model elements. For example, the model
that was developed for a commercial project in the field of
telecommunication [3] has a total of 413 model elements
consisting of 160 facts (142 entities and 16 attributes), 27
activities and 226 impacts. Hence, quality models demand
a rich tool set for their efficient creation, management and
application just like other large models, e. g. UML class di-
agrams.

Due to the fact that our quality models are based on an
explicit metamodel we are able to provide a model editor
that does not only allow the initial development of quality
models but also supports other common tasks like browsing,
persistence, versioning and refactoring3.

One of the most powerful features of the model editor is
the automatic generation of guideline documents from the
quality model. This enables us to transfer the abstract def-
inition of quality stored in the model to a format develop-
ers are familiar with. However, unlike classic, hand-written
guidelines the automatically generated ones are guaranteed
to be synchronized with the quality model that explicitly
captures the understanding of quality within a project or a
company. Guideline documents can be tailored to specific
needs by defining selected views on the model. For exam-
ple, a guideline document could be specifically generated to
be used during documentation review sessions.

3A beta version of the editor can be downloaded from
http://www4.cs.tum.edu/˜ccsm/qmm/

6

3.6. Summary

Our approach to modeling maintainability is based on
the quality metamodel QMM. It advances on previous ap-
proaches to model maintainability and quality with respect
to the following issues:

Focus on Activities Our model enforces a clear separa-
tion of system characteristics and maintenance activities.
This separation makes activities, which constitute the main
cost factor in software maintenance, first-class citizens in
quality modeling and thereby contributes to a discussion of
quality economics [25].

Unambiguous Decomposition Criteria Previous hierar-
chical models often exhibit a “somewhat arbitrary selec-
tion of characteristics and sub-characteristics” [13, 14]. We
claim this is due to the fact that previous models typically
lack a clearly defined decomposition criterion. For exam-
ple, it is not entirely clear how self-descriptiveness relates
to testability in Boehm’s quality characteristics tree if one is
not satisfied with a trivial “has something to do with”. Our
approach overcomes this shortcoming by rigorously sepa-
rating aspects that are typically intermingled: activities, en-
tities and attributes. This separation creates separate hierar-
chies with clearly defined decomposition criteria.

Scope Our approach is not limited to modeling quality
characteristics of a system itself. It includes external but
equally important organizational issues like the existence of
a configuration management process or the available tool
infrastructure.

Explicit Metamodel Unlike other approaches known to
us, our approach is based on an explicitly defined meta-
model. This enables us to provide a rich set of tools for
editing and maintaining quality models. Most importantly,
the metamodel is a key required for the model-based qual-
ity controlling approach outlined before. Additionally, the
metamodel fosters the conciseness, consistency and com-
pleteness of quality models as it forces the model designer
to stick to an established framework and supports him in
finding omissions. Examples are given in the next section.

4. Case Study

The applicability and usefulness of the approach de-
scribed above was evaluated in a case study with a Ger-
man truck and bus manufacturer. Specifically, we built
a model for the maintainability of the Matlab Simulink
and Stateflow models used for code generation. For this,
the quality model we had developed in a project in the

field of telecommunication was modified and extended
with Simulink/Stateflow-specific elements. Guideline doc-
uments were generated from the model and automatic anal-
yses were derived.

4.1. Environment

MAN Nutzfahrzeuge Group The MAN Nutzfahrzeuge
Group is a German-based international supplier of com-
mercial vehicles and transport systems, mainly trucks and
busses. It has over 34,000 employees world-wide of which
150 work on electronics and software development. Hence,
the focus is on embedded systems in the automotive do-
main.

The organization brought its development process to a
high level of maturity by investing enough effort to redesign
it according to best practices and safety-critical system stan-
dards. The driving force behind this redesign was con-
stantly focusing on how each activity contributes to global
reliability and effectiveness. Most parts of the process are
supported by an integrated data backbone developed on the
eASEE framework from Vector Consulting GmbH. On top
of this backbone, a complete model-based development ap-
proach has been established using the tool chain of Mat-
lab/Simulink and Stateflow as modeling and simulation en-
vironment and TargetLink of dSpace as C-code generator.
We describe the application and adoption of our model to
this concrete situation and the generated benefits. The study
lead to the adoption of the model into the MAN standard de-
velopment process.

Embedded Systems and Matlab/Simulink Mat-
lab/Simulink is a model-based development suite aiming
at the embedded systems domain. It is commonly used
in the automotive area. The original Simulink has its
focus on continuous control engineering. Its counterpart
Stateflow is a dialect of statecharts that is used to model the
event-driven parts of a system. The Simulink environment
already allows to simulate the model in order to validate it.

In conjunction with code generators such as Embedded
Coder from MathWorks or TargetLink by dSpace it enables
the complete and automatic transformation of models to ex-
ecutable code. This is a slightly different flavor of model-
based development than the MDA approach proposed by
the OMG4. There is no explicit need to have different types
of models on different levels and the modeling language
is not UML. Nevertheless, many characteristics are simi-
lar and quality-related results could easily be transferred to
an MDA setting.

4http://www.omg.org/mda/

7

4.2. The Maintainability Model

The initial maintainability model that was developed in
the field of telecommunication (Sec. 3) already covered var-
ious areas that we consider important for MAN, too. Exam-
ples are the parts of the model dedicated to architectural
aspects or to the development process.

In the case study, we augmented the existing main-
tainability model with model elements that address
Simulink/Stateflow-models which are used as basis for code
generation. Although such models are seemingly different
from traditional source code, we found that a great num-
ber of source-code-related facts could be reused for them as
they fundamentally serve the same aim: specify executable
production-code.

Specifically, we extended the facts tree of the maintain-
ability model with 87 facts (64 new entities and 3 new at-
tributes) that describe properties of entities not found in
classical code-based developed. Examples are states, sig-
nals, ports and entities that describe the graphical represen-
tation of models, e. g. colors. Furthermore, we modified
the activities tree to match the MAN development process
and added two activities (Model Reading and Code Gen-
eration) that are specific for the model-based development
approach. 84 impacts describe the relation between facts
and activities.

The newly developed parts of the maintainability model
are based on three types of sources: (1) existing guidelines
for Simulink/Stateflow, (2) scientific studies about model-
based development and (3) expert know-how of MAN’s en-
gineers.

Specifically, our focus lies on the consolidation of four
guidelines available for using Simulink and Stateflow in the
development of embedded systems: the MathWorks docu-
mentation [17], the MAN-internal guideline, the guideline
provided by dSpace [8], the developers of the TargetLink
code-generator, and the guidelines published by the Math-
Works Automotive Advisory Board (MAAB) [18].

Because of space and confidentiality reasons, we are not
able to fully describe the MAN-specific model here. How-
ever, we present a number of convincing examples that
demonstrate how our approach helps to overcome different
kinds of shortcomings.

We start with a simple translation of the existing MAN
guidelines for Stateflow models into the maintainability
model. For example, the MAN guideline requires the cur-
rent state of a Stateflow chart to be available as an measur-
able output. This simplifies testing of the model and im-
proves the debugging process. In terms of the model this
is expressed as [Stateflow Chart | ACCESSIBILITY] +−→ [Debug-
ging] and [Stateflow Chart | ACCESSIBILITY] +−→ [Test].

We describe the ability to determine the current state
with the attribute ACCESSIBILITY of the entity Stateflow Chart.

The Stateflow chart contains all information about the ac-
tual statechart model. Note that we carefully distinguish
between the chart and the diagram that describes the graph-
ical representation. In the model the facts and impacts have
additional fields that describe the relationship in more de-
tail. This descriptions are included in generated guideline
documents.

Consolidation of the Terminology In the case study we
found that building a comprehensive quality model has the
beneficial side-effect of creating a consistent terminology.
By consolidating the various sources of guidelines, we dis-
covered a very inconsistent terminology that hampers a
quick understanding of the guidelines. Moreover, we found
that even at MAN the terminology has not been completely
fixed. Fortunately, building a quality model automatically
forces the modeler to give all entities explicit and consistent
names. The entities of the facts tree of our maintainabil-
ity model automatically define a consistent terminology and
thereby provide a glossary.

One of many examples is the term subsystem that is used
in the Simulink documentation to describe Simulink’s cen-
tral means of decomposition. The dSpace guideline, how-
ever, uses the same term to refer to a TargetLink subsystem
that is similar to a Simulink subsystem but has a number of
additional constraints and properties defined by the C-code
generator. MAN engineers on the other hand, usually refer
to a TargetLink subsystem as TargetLink function or sim-
ply function. While building the maintainability model, this
discrepancy was made explicit and could be resolved.

Resolution of Inconsistencies Furthermore, we are not
only able to identify inconsistencies in the terminology but
also in contents. For the entity Implicit Event we found
completely contradictory statements in the MathWorks doc-
umentation and the dSpace guidelines.

• MathWorks [17] “Implicit event broadcasts [. . .] and
implicit conditions [. . .] make the diagram easy to read
and the generated code more efficient.”

• dSpace [8] “The usage of implicit events is therefore
intransparent concerning potential side effects of vari-
able assignments or the entering/exiting of states.”

Hence, MathWorks sees implicit events as improving the
readability while dSpace calls them intransparent. This is a
clear inconsistency. After discussing with the MAN engi-
neers, we adopted the dSpace view.

Revelation of Omissions An important feature of the
quality metamodel is that it supports inheritance. This be-
came obvious in the case study after modeling the MAN
guidelines for Simulink variables and Stateflow variables.

8

We model them with the common parent entity Variable that
has the attribute LOCALITY that expresses that variables must
have the smallest possible scope. As this attribute is inher-
ited by both types of variables, we found that this important
property is not expressed in the original guideline. More-
over, we see by modeling that there was an imbalance be-
tween the Simulink and Stateflow variables. Most of the
guidelines related only to Simulink variables. Hence, we
transferred them to Stateflow as well.

Integration of Recent Research Results Finally, we give
an example of how a scientific result can be incorporated
into the model to make use of new empirical research.
The use of Simulink and Stateflow has not been inten-
sively investigated in terms of maintainability. However,
especially the close relationship between Stateflow and the
UML statecharts allows to reuse results. A study on hier-
archical states in UML statecharts [5] showed that the use
of hierarchies improves the efficiency of understanding the
model in case the reader has a certain amount of experi-
ence. This is expressed in the model as follows: [Stateflow
Diagram | STRUCTUREDNESS] +−→ [Model reading].

4.3. Usage of the Model

In the case study, we concentrated on checklist genera-
tion and some preliminary automatic analyses. Those were
chosen because they promised the highest immediate pay-
off.

Checklist Generation We see quality models as central
knowledge bases w.r.t. quality issues in a project, company,
or domain. This knowledge can and must be used to guide
development activities as well as reviews. However, the
model in its totality is too complex to be comprehended en-
tirely. Hence, it cannot be used as a quick reference. There-
fore, we exploit the tool support for the quality model to
select subsets of the model and generate concise guidelines
and checklists for specific purposes.

Automatic generation of guideline documents was per-
ceived to be highly valuable as the documents could be
structured to be read conveniently by novices as well as
experts. Therefore the documents feature a very compact
checklist-style section with essential information only. This
representation is favored by experts who want to ensure that
they comply to the guideline but do not need any further ex-
planation. For novices the remainder of the document con-
tains a hyperlinked section providing additional detail. Au-
tomatic generation enables us to conveniently change the
structure of all generated documents. More importantly, it
ensures consistency within the document which would be
error-prone in hand-written documents.

Preliminary Automatic Analyses. As the model is aimed
at breaking down facts to a level where they can be assessed
and they are annotated with the degree of possible automa-
tion, it is straightforward to implement automatic analy-
ses. So far, we have not fully exploited the possibilities
but we are able to show that simple facts can be checked in
Simulink and Stateflow models. For this, we wrote a parser
for the proprietary text format used by Matlab to store the
models. Using this parser we are able to determine basic
size and complexity metrics of model elements like states,
blocks, etc. Moreover, we can use the parser to automati-
cally identify model elements that are not satisfactorily sup-
ported by the C-code generator. By integrating these analy-
ses in our quality controlling toolkit CONQAT [6] we are
able to create aggregated quality profiles and powerful vi-
sualizations of quality data.

4.4. Discussion

The metamodel and the corresponding method for mod-
eling maintainability proposed in Sec. 3 proved to be ap-
plicable to industrial development environments in the case
study. After a short time, the 2-dimensional structure was
accepted by the MAN engineers. Especially the model’s ex-
plicit illustration of impacts on activities was seen as bene-
ficial as it provides a sound justification for the quality rules
expressed by the model. Moreover, the general method of
modeling – that inherently includes structuring – improved
the guidelines: although the initial MAN guideline included
many important aspects, we still were able to reveal sev-
eral omissions and inconsistencies. Building the model,
similar to other model building activities in software engi-
neering [23], revealed these problems and allowed to solve
them.

Another important result is that the maintainability
model contains a consolidated terminology. By combining
several available guidelines, we could incorporate the qual-
ity knowledge contained in them and form a single termi-
nology. We found terms used consistently as well as incon-
sistent terminology. This terminology and combined know-
ledge base was conceived useful by the MAN engineers.

Although the theoretical idea of using an explicit quality
metamodel for centrally defining quality requirements is in-
teresting for MAN, the main interest is in the practical use
of the model. For this, the generation of purpose-specific
guidelines was convincing. We not only build a model to
structure the quality knowledge but we are able to commu-
nicate that knowledge in a concise way to developers, re-
viewers and testers. Finally, the improved efficiency gained
by automating specific assessments was seen as important.
The basis and justification for these checks is given by the
model.

9

5. Conclusion
Although maintainability is undisputedly considered one

of the fundamental quality attributes of software systems,
the research community has not yet produced a sound and
accepted definition or even a common understanding what
maintainability actually is. Substantiated by various exam-
ples we showed that this shortcoming is due to intrinsic
flaws of current approaches to define, assess and improve
maintainability. We showed that there is a need to make
maintenance activities first-class citizens in modeling main-
tainability due to their economical importance. This notion
is captured by our 2-dimensional quality metamodel which
maps facts about a development situation to maintenance
activities and thereby highlights their impact on the mainte-
nance effort.

In a case study in the automotive domain we showed
that our metamodel and the accompanying tools could be
successfully used to build a comprehensive maintainabil-
ity model for the development of embedded systems with
Simulink/Stateflow. The construction of the model helped
to define a consistent terminology and to reveal omissions
as well as contradictions in existing quality guidelines.
Long-term benefits are gained by the automatic generation
of specifically-tailored guideline documents and the usage
of automatic quality assessments. The study lead to the in-
clusion of the model into the MAN standard development
process.

Our future work with MAN focuses on widening the
scope of the automated quality assessments. After first en-
couraging results with modeling usability [27], we currently
use the quality metamodel to model other quality attributes
like reliability and performance. Furthermore, we plan to
use an integrated quality model for all relevant quality at-
tributes. Our aim is to unify the currently used isolated ap-
proaches to quality to enable a holistic but systematic dis-
cussion of quality. We are convinced that this is an impor-
tant step towards our final goal of a truly economically jus-
tified practice of quality engineering.

References
[1] G. M. Berns. Assessing software maintainability. ACM

Communications, 27(1), 1984.
[2] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.

Macleod, and M. J. Merrit. Characteristics of Software
Quality. North-Holland, 1978.

[3] M. Broy, F. Deissenboeck, and M. Pizka. Demystifying
maintainability. In Proc. 4th Workshop on Software Qual-
ity. ACM Press, 2006.

[4] D. Coleman, D. Ash, B. Lowther, and P. W. Oman. Using
metrics to evaluate software system maintainability. IEEE
Computer, 27(8), 1994.

[5] J. A. Cruz-Lemus, M. Genero, M. E. Manso, and M. Piat-
tini. Evaluating the effect of composite states on the under-
standability of UML statechart diagrams. In Proc. 8th Int.

Conf. Model Driven Engineering Languages and Systems.
Springer, 2005.

[6] F. Deissenboeck, M. Pizka, and T. Seifert. Tool support
for continuous quality assessment. In Proc. 13th IEEE Int.
Workshop on Software Technology and Engineering Prac-
tice. IEEE CS Press, 2005.

[7] R. G. Dromey. A model for software product quality. IEEE
Transactions on Software Engineering, 21(2), 1995.

[8] dSpace. Modeling Guidelines for MATLAB/ Simulink/ State-
flow and TargetLink, 2006.

[9] D. A. Garvin. What does product quality really mean? MIT
Sloan Management Review, 26(1):25–43, 1984.

[10] M. Halstead. Elements of Software Science. Elsevier Science
Inc., New York, NY, USA, 1977.

[11] IEEE. 1219 Software maintenance. Standard, 1998.
[12] ISO. 9126-1 Software engineering - Product quality - Part

1: Quality model. International standard, 2003.
[13] B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni. The

squid approach to defining a quality model. Software Quality
Journal, 6(3):211–233, Sept. 1997.

[14] B. Kitchenham and S. L. Pfleeger. Software quality: The
elusive target. IEEE Software, 13(1), 1996.

[15] B. Kitchenham, S. L. Pfleeger, and N. Fenton. Towards
a framework for software measurement validation. IEEE
Transactions on Software Engineering, 21(12):929–944,
1995.

[16] R. Marinescu and D. Ratiu. Quantifying the quality of
object-oriented design: The factor-strategy model. In Proc.
WCRE. IEEE CS Press, 2004.

[17] The MathWorks. Simulink Reference, 2006.
[18] MathWorks Automotive Advisory Board. Controller Style

Guidelines For Production Intent Using Matlab, Simulink
And Stateflow, 2001.

[19] T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4):308–320, 1976.

[20] J. McCall and G. Walters. Factors in Software Quality. The
National Technical Information Service, Springfield, VA,
USA, 1977.

[21] P. Oman and J. Hagemeister. Metrics for assessing a soft-
ware system’s maintainability. In Proc. Int. Conf. on Soft-
ware Maintenance, 1992.

[22] M. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis. The
Capability Maturity Model: Guidelines for Improving the
Software Process. Addison-Wesley, 1995.

[23] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel,
M. Baumgartner, B. Sostawa, R. Zölch, and T. Stauner. One
evaluation of model-based testing and its automation. In
Proc. 27th Int. Conf. on Software Engineering. ACM Press,
2005.

[24] Sun Microsystems. Code Conventions for the Java Pro-
gramming Language, 1999.

[25] S. Wagner. Using economics as basis for modelling and
evaluating software quality. In Proc. First Int. Workshop
on the Economics of Software and Computation. IEEE CS
Press, 2007.

[26] J. Q. Wilson and G. L. Kelling. Broken windows. The At-
lantic Monthly, 249(3), 1982.

[27] S. Winter, S. Wagner, and F. Deissenboeck. A comprehen-
sive model of usability. In Proc. of Engineering Interactive
Systems. Springer, 2007. To appear.

10

