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Abstract— Static Code Analysis Tools are a popular aid to
monitor and control the quality of software systems. Still, these
tools only provide a large number of measurements that have
to be interpreted by the developers in order to obtain insights
about the actual quality of the software. In cooperation with
professional quality analysts, we manually inspected source code
from three different projects and evaluated its maintainability.
We then trained machine learning algorithms to predict the
human maintainability evaluation of program classes based on
code metrics. The code metrics include structural metrics such
as nesting depth, cloning information and abstractions like
the number of code smells. We evaluated this approach on a
dataset of more than 115,000 Lines of Code. Our model is
able to predict up to 81% of the threefold labels correctly and
achieves a precision of 80%. Thus, we believe this is a promising
contribution towards automated maintainability prediction. In
addition, we analyzed the attributes in our created dataset and
identified the features with the highest predictive power, i.e. code
clones, method length, and the number of alerts raised by the tool
Teamscale. This insight provides valuable help for users needing
to prioritize tool measurements.

Index Terms— Software Quality, Software Maintenance, Code
Comprehension, Static Code Analysis, Maintenance Tools

I. INTRODUCTION

Software vendors aim to develop software systems that

fulfill all functional requirements, are economical to build in

the first place while also being easy to maintain in the future.

The largest share of the development costs is actually main-

tenance costs [1], [2]. Therefore, there exists a direct relation

between the maintainability of a system and its economic

profitability. Over time, maintenance costs increase as the

code basis becomes larger and errors are propagated [3]. It is

therefore critical for software vendors to establish continuous

quality management to avoid cost explosions. Code reviews,

for example, can help to evaluate and control the quality of

source code [4]. Also, software health checks by external

quality auditors are a tried and tested remedy [5], [6]. Though

these manual inspection techniques are effective and well es-

tablished, they are also expensive and time-consuming. Instead

of continuously performing extensive and expensive reviews

during development, many companies use static analysis tools

to track the quality of their systems. These tools analyze

source code and provide measurements about the program

without actually executing it. Unfortunately, several studies

confirm the high number of inadequate warnings emitted by

these tools [7], [8]. Developers quickly feel overwhelmed

by the large number of measurements provided by such

tools. Thus, several approaches use polynomial functions to

aggregate multiple measurements into one single numerical.

One of the first approaches was the Maintainability Index

introduced by Oman [9]. Several years later, Benestad et

al. [10] point out the need to define a strategy for every

metric-based assessment, consisting of well-defined selection-,

combination-, aggregation- and interpretation techniques. Still,

this strategy has to be defined manually, and especially the

interpretation of the results requires enormous expertise. In-

stead of using a predefined polynomial with fixed weights,

we try to capture that human intuition of professional quality

experts with artificial intelligence. The company itestra brings

15 years of industrial experience to this joint research. In

addition to software engineering projects, itestra also offers

post-release software audits, sometimes referred to as software

health checks [5].

Our research models the experience of professional quality

analysts using machine learning. The goal is to establish an

automated evaluation using metrics, that is based on expert

judgment. This paper hence evaluates the following approach

towards automated assessments: With the help of quality

consultants working at itestra, we manually analyzed source

code from three different projects, accounting for 115,373

lines of Java code. The experts labeled the corresponding

classes with respect to their maintainability to create a labeled

dataset. Then, we retrieved the output of three static analysis

tools for these classes and attached the labels. Eventually, we

trained supervised machine learning algorithms to assess the

maintainability of source code based on static measurements.

Analyzing the created dataset, we also identified the measure-

ments with the highest predictive power. In our prediction

experiments, we obtained promising results with respect to

the achieved accuracy of 81% and F-Score of 80%. While

we consider this a promising first step towards automated

quality assessments, it is not yet sufficient for a stand-

alone tool. However, our approach offers a valuable quick

assessment for developers without access to professional, time-

consuming software assessments. In addition, our feature eval-

uation showed that cloning information, Teamscale-Findings,

and method length are the metrics with the highest correlation

to maintainability as perceived by the experts.
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II. RELATED WORK

Coleman et al. [11] investigated the relations between

manual and metric-based automated assessments. Their study

shows that the results of the automated maintainability analysis

and the qualitative assessments performed by maintenance

engineers strongly correlate. In their study, polynomial models

were used to compare software systems. Benestad et al. [10]

also predicted software maintainability based on metrics in

their paper in 2006. Their approach mostly considered mea-

surements describing the relation of one class to other classes

of the system, e.g. coupling. While we use machine learning to

capture the experience of professionals, they discuss different

selection-, aggregation-, combination- and interpretation meth-

ods to deduce the maintainability. In [8], Yüksel and Sözer

applied machine learning techniques to classify alerts emitted

by static analysis tools. In contrast to our work, these alerts

are bug-related and do not consider possible maintainability

issues. Koc et al. [7] follow a similar approach and focus

on bug alerts, too. In a first step, they isolate the code

that was highlighted by the analysis tool. Applying machine

learning to these code snippets, they either confirm or refute

the finding. Hegedűs et al. [12] proposed an approach to

build a method-level maintainability prediction model based

on human evaluation. Three surveys were conducted resulting

in three datasets of source code maintainability. They found

that none of the datasets was suitable to build a reliable

regression model.
Since labeling source code is challenging and time-

consuming, Kumar et al. referred to the number of changed

lines per file to quantify maintainability [13], while Hegedűs

et al. conducted a survey to collect maintainability labels [12].

In contrast to these works, our study refers to maintainability

as perceived by professional quality consultants. In summary,

we capture the maintainability perception of quality experts

using metrics. In contrast to Oman [9] and Coleman [11], we

do not aggregate the metrics using polynomial functions with

fixed parameters, but apply machine learning algorithms to

learn the expert evaluation. Opposed to work from Hegedűs

et al., this research focuses on class-level maintainability.

III. EXPERIMENT SETUP

In contrast to other studies, this paper does not measure

task-completion-time to refer to comprehensibility [14] or the

number of revisions to refer to maintainability [13], [15].

Instead, we work together with professionals from industry

and their experience-based definition of maintainability. For

this purpose, we define maintainability as the ease of change,

leading to two sub-characteristics:

1) As a developer, can I understand what the code does and

identify where certain aspects are implemented?

2) As a developer, do I have to worry about hidden depen-

dencies of the code I am currently modifying?

While the first aspect addressed the need to comprehend

the source code, the second one focuses on where else the

developer has to apply changes. For example, duplications of

the code snippet have to be found and modified as well.

Fig. 1. Overall Approach

Provided the expert judgment, this research answers the

following questions:

• Is it possible to predict a human intuition of the main-

tainability of source code based on tool measurements?

• Are there relations between metrics and expert judgment,

and which metrics have the highest predictive power?

A. Overall Approach

Figure 1 depicts the overall framework of our approach. In

the data preparation phase, we extracted metrics from the code

sample using static analysis tools, performed data cleaning

and combined the metrics and the label. Next, we train and

validate the models. We selected a diverse set of 21 algorithms

representative for different approaches. For each classifier, the

iteration train→ evaluate→ parameter tuning continued until

all possible parameter combinations were evaluated. At this

stage, we also analysed the predictive power of the features.

B. Study Objects

To evaluate the approach, a dataset of source code and

its evaluation has to be created. We took our sample from

three software systems written in Java. The chosen sample

includes 115,373 Lines of Code (LoC), distributed over 345

classes. To ensure a high diversity among the study objects, we

chose one small project with approx. 45k LoC, one medium-

sized system with around 380k LoC and one big project with

more than 3M LoC. The age of the systems lies between

4 and 19 years. The projects cover in-house, off-shore, and

open-source development. Two of the systems are industrial

projects located in the insurance domain. The third system is

the software testing framework JUnit 4 (Version 4.11). Table I

provides an overview of the systems.

C. Static Analysis Tools for Data Collection

Static code analysis tools analyze source code without

actually executing it. Their measurements serve as input for
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TABLE I
ANALYZED SOURCE CODE

System A JUnit 4 (4.11) System C
Domain Insurance Software Dev. Insurance
Purpose Offer Manage-

ment System
Testing Frame-
work

Damage Evalu-
ation System

First Release 2000 2014 2014
Development Outsourced Open-source In-house
Size 3.1M LOC 44.6k LOC 380k LOC
Chosen 65k LOC 10k LOC 41k LOC
Sample 160 Classes 75 Classes 110 Classes

our experiments. We targeted to use both commercial and free-

to-use tools and to integrate both basic measurements as well

as complex metrics. Among the various available tools we

chose the following three:

• ConQAT: The tailorable, open-source framework inte-

grates clone detection and structural assessments [16].

• Teamscale: This commercial tool evaluates both structural

properties and code style to identify code anomalies.

These anomalies are called findings and are automatically

categorized according to their severity [17].

• SonarQube: The open-source tool offers tailorable quality

gates. It also provides aggregated measurements like code

smells and potential vulnerabilities or bugs [18].

Examples of the extracted attributes are the following:

• Size: Lines of Code, Source Lines of Code, Method Lines

of Code, Number of Conditions

• Structural: Max. Method Length, Avg. Method Length,

Max. Block Depth, Loop Length, Max. Loop Depth

• Cloning: Clone Coverage, Clone Units

• Complex Measurements: Cognitive Complexity, Code

Smells, Teamscale-Findings (i.e. the number of quality

violations identified by Teamscale)

D. Labeling

In order to learn from our code base, the source code is

analyzed and labeled by experts. On one hand, it is impossible

to evaluate source code without context. On the other hand, we

had to draw a line what to take into account and what to omit

from the analysis. Hence, we chose a class-level granularity.

The possible classification is threefold: A, B, and C.

• Label A indicates the absence of indicators for maintain-

ability problems with respect to the ease of change.

• Label B covers classes with some room for improvement.

• Label C is assigned to code that is clearly hard to

maintain and requires high effort to be changed.

Our experiment aims to capture the experience of profes-

sional experts. Therefore, it is imperative to label the data

according to that expertise. Although this limits the size of

the dataset, we still managed to label 345 classes, representing

more than 115k Lines of Java Code that had to be inspected

and evaluated. In this context, it is not advisable to automati-

cally label large datasets with, for example, a rule-based script.

The machine learning algorithm would not capture the expert

opinion, but would simply reverse engineer the rules used for

Fig. 2. Label distribution in each system

the automated labeling. During the joint assessment of the

study objects, both the quality consultants and the researchers

evaluated the source code. The judgment of the researchers

was then discussed in joint validation sessions, ensuring the

provided label matched the opinion of the experts. The labeling

procedure resulted in 182 instances out of 345 (52.75%) being

assigned label A, 51 instances (14.78%) assigned label B, and

112 instances (32.46%) are categorized as C. The distribution

of the labels among the single projects is shown in Figure 2.

IV. EXPERIMENT

Though our dataset covers more than 115k Lines of Code,

it accounts for just 345 instances. To avoid bias introduced by

splitting the 345 data points in fixed training, validation, and

test sets, we used 10-fold stratified cross-validation. Since we

are using a threefold label and thus face a multiclassification

problem, we use accuracy, precision, recall, and F-Score to

evaluate the performance of the algorithms as suggested by

Sokolova [19]. In addition, we analyzed differences in the

performance between the classes A, B, and C.

A. Prediction Results

Our experiments are implemented using the Waikato Envi-

ronment for Knowledge Analysis (Weka) [20] Version 3.9.3.

Every algorithm was run once in its default configuration

before hyperparameter optimization was applied. The results

discussed in the remainder of this subsection correspond to

the best observed performance of each classifier.

The algorithm with the best results was J48, a decision tree

based algorithm. It was able to classify 279 instances (81%)

correctly. It achieved a precision of 79.7% with a recall of

80.9%, combining for an F-Score of 80.1%. The performance

of the best classifiers and baseline comparisons are denoted in

Table II. The table also shows that J48 outperforms the other

classifiers in all four performance measures.

In addition to the performance over the whole dataset, we

also investigated differences between the categories. Table III

denotes the F-Score per class for the three best-performing

classifiers. Indeed, a significant drop for files from category B
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TABLE II
EXPERIMENT RESULTS

Classifier Accuracy Precision Recall F-Score
J48 0.8087 0.7967 0.8087 0.8009
LMT 0.7971 0.7693 0.7971 0.7757
SimpleLogistic 0.7971 0.7577 0.7971 0.7566
... ... ... ... ...
OneR 0.7102 0.6430 0.7101 0.6540
... ... ... ... ...
Multilayer
Perceptron

0.6667 0.6667 0.6667 0.6667

ZeroR 0.5275 n/a 0.5275 n/a

TABLE III
RESULT DIFFERENCES

Classifier F-Score
Category A Category B Category C

J48 0.874 0.449 0.842
LMT 0.859 0.290 0.862
SimpleLogistic 0.860 0.161 0.860

can be observed. J48 only achieves an F-Score of 44.9%, while

the performance is even worse for LMT and SimpleLogistic

with 29.0% and 16.1%, respectively.

B. Attribute Evaluation

Given the combination of the tool output and the categories

assigned by manual inspection, we analyzed the resulting

matrix for the most influential features. We applied six dif-

ferent feature selection algorithms on our data. Table IV lists

the results of the algorithms InfoGain and OneR Attribute
Evaluation. Due to the space limitations of this paper, we list

the results of neither all algorithms nor all 67 attributes. For

presentation reasons, we count the number of times a feature

was part of the 10 highest-ranked attributes. This number

is provided in the right-most column of Table IV. Features

with less than four votes are omitted from the table. The

attribute evaluation identified clone coverage as one of the

most predictive features. Also, clone units were selected by

five out of six techniques, whereas Teamscale-Findings and

the maximum size of a method are selected in four of the

six cases. Hence, these characteristics are considered the most

influential features.

TABLE IV
MOST INFUENTIAL FEATURES

Attribute InfoGain
Score

OneR At-
trEval

Top10 Ap-
pearances

Clone Coverage 50NN(i) 0.3070 69.86 6
Clone Units 50NN(i) 0.2633 71.01 5
Teamscale-Findings 0.2777 66.38 4
Max. SLOC per Method 0.2415 64.03 4
Max. LOC per Procedure 0.2226 65.80 4
Max. LOC per Method 0.2164 65.51 4

(i) non-normalized, minimum length of 50 units

V. DISCUSSION

This experiment uses a threefold label as we think a

threefold classification captures the expert understanding of

maintainability best. We did not compare the results with other

labels such as a twofold label. Binary labels do not reflect the

real world, and, even more importantly, do not reflect the way

experts perceive quality. For the very same reason, we decided

to use a classification model instead of regression models

as implemented in [12]. From our experience, a numerical

value does not correspond to the way experts perceive quality.

Quality analysts do not target to retrieve a numerical value but

aim to develop a general understanding of existing problems.

A. Interpretation of the Prediction Results

The results presented in Section IV show that the as-

signed label corresponds to the experts’ categorization in

up to 80.87% of the time. The classifiers J48, LMT, and

SimpleLogistic delivered the best results in our experiment.

They clearly outperform baseline-classifiers such as ZeroR by

a large margin. The best-performing algorithm, J48, is based

on C4.5, a decision tree algorithm described in detail in [21].

It achieved an accuracy of more than 80% and an F-Score

greater than 80% as well. LMT, the second-best performing

algorithm, also implements a decision tree. In contrast to J48,

LMT uses logistic functions at the leaves [22].

Analyzing the performance of these three algorithms, we

observed significant differences between the three categories

A, B, and C. As illustrated in Table III, the F-Score for

category B just ranged from 16% to 45% while being above

84% for all other classes. We interpret this finding as follows.

Our prediction approach is able to identify classes with good

quality and classes with bad quality. It performs poor for

mediocre labels. To solidify this interpretation, we analyzed

the false positives. Using J48, 7 instances of category A were

erroneously classified as C (4%), 12 instances were mistaken

for B (7%), and 163 instances (89%) were labeled correctly.

In contrast, 10 instances of category C were misclassified

as A (9%), 6 instances (5%) were classified as B and 96

instances (86%) were labeled correctly.

Given these observations, the classification results can be

interpreted both optimistically and pessimistically. The goal

of industrial software quality assessments is to identify which

parts of the system suffer from bad quality. Based on the

identified issues, measures are taken whether to rebuild the

system, renovate certain components or restructure the devel-

opment team [6]. The analysis of the false positives shows

that the automated approach is not yet suitable to replace the

human expert in finding these trouble spots. Not only does

it assign wrong labels in 19% of the time, but the produced

false positives are actually severe. Hard to maintain code was

misclassified as easy to maintain in 9% of the times. Missing

that number of potential trouble spots prohibits to rely on the

classification in critical software assessments. System owners

should not derive far-reaching actions based on a classification

with just 81% accuracy.
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However, we still consider the achieved results the first step

towards automated quality analysis. Static analysis tools are

not only used for external quality assessments, but also for

continuous quality control. Using the tools SonarQube, Team-

scale and ConQAT, one obtains 67 different measurements,

making it hard to reason about maintainability at a glance.

This work presents a method to aggregate different metrics in a

way that is learned from experienced experts. Though it is not

comparable with human experts, the automated classification

helps developers to identify a great share of the code with

maintainability issues.

B. Interpretation of Attribute Evaluation

As mentioned earlier, static code analysis tools analyze

source code and report the measured characteristics. The user

must draw conclusions and interpret the metrics based on

his experience and expertise. In this research, we created a

dataset of source code, the static tool output for this code and

its expert evaluation. The most influential metrics presented

in Table IV now allow developers insights into the expert

evaluation. Hence, we believe our feature analysis provides

valuable guidance for developers which metrics to focus on

to predict the expert opinion. The first two metrics to be

taken into account are cloning coverage and clone units since

they have the highest correlation with the expert judgment.

Then Teamscale-Findings should be respected, as well as the

maximum method length. This does not mean that all other

metrics should be ignored, but this set already offers a good

indication of code maintainability.

In the context of this research, maintainability was defined

as the ease of change, i.e. a combination of comprehensibility

of the code itself, and understandability which dependencies

have to be updated as well. Clone coverage and clone units

refer to code duplications. Modification of a code snippet with

a duplicate in another place forces the developer to search for

the clone and apply the change here as well [23]. With code

duplications hence leading to decreased maintainability, it is

not surprising that cloning measurements show high predictive

power. Interestingly, as opposed to the size of a method, the

size of a class is not amongst the most influential features.

Teamscale and other static analysis tools automatically rate

large classes with more than 750 Source Lines of Code as

hard to maintain [24]. We did not apply such fixed thresholds

and actually rated every program class manually. Hence,

we consider the results of the feature analysis a valuable

contribution to research, as it reverse engineers the intuition

of the human experts.

C. Threats to Validity and Future Work

In this study, the maintainability of classes was evaluated

manually. To mitigate the threat to internal validity, validation

sessions were performed to discuss the evaluation. Still, the

assessment was performed by quality consultants from just

one company. We notice that our dataset consists of only three

systems, covers just two domains and only includes Java code.

Also, the used dataset is imbalanced with class A and class C

dominating the data distribution.

This work presents initial findings and promising results

on using static analysis metrics to classify the maintainability

of source code. For future work, we plan to explore the

possibility of using metrics derived from mining identifiers,

method names, and comments as well. Also, investigating the

influence of class network metrics on maintainability is part

of our future plan. In the meantime, reducing the number of

features and increasing the size of the dataset is our priority

in order to reduce the risk of overfitting and increase the

reliability of the classification model. Finally, there is one

major limitation to the chosen approach. While inspecting and

evaluating the source code, we observed that several negative

findings are of semantic nature. While static code analysis

tools have their strengths in assessing structural characteristics,

they cannot detect semantic flaws. For example, discrepancies

between implemented behavior and documentation lead to

lower perceived comprehensibility but are not reflected by

structural metrics.

VI. CONCLUSION

The goal of this study is to model the experience of

professional quality analysts using machine learning. There-

fore, a sample of 115,373 Lines of Code was selected from

three study objects, including two industrial systems. In joint

work with professional quality analysts, the source code was

inspected and evaluated on class-level. The evaluation is based

on the ease of change, i.e. the comprehensibility of the source

code, and the comprehensibility which external dependencies

have to be updated after a change. The experts assigned the la-

bels A, B, and C to each file. Label C indicates the code is hard

to maintain, while A corresponds to the absence of indications

for low maintainability. While manual assessments are a well-

established method to evaluate the quality of software, many

developers use static analysis tools to monitor quality. In this

study, we used metrics emitted by such tools to learn and pre-

dict expert judgement. The algorithm J48 achieved an accuracy

of 81% and a precision of 80%. We consider this approach to

be a promising first step toward automated software evaluation.

While the performance is sufficient for quick assessments, it

is not yet suitable to replace an expert review. In addition, we

analyzed the used features and investigated their predictive

power. We found that clone coverage and clone units are the

most influential features. Teamscale-Findings, i.e. the number

of identified quality violations as computed by Teamscale, and

the maximum method length also have high predictive power.

This result provides guidance which metrics to prioritize for

maintainability evaluations, based on the correlation with the

expert judgment.
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