
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Vectorizing Software for Machine Learning

Christian Feiler

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Vectorizing Software for Machine Learning

Vektorisieren von Software für
Maschinelles Lernen

Author: Christian Feiler
Supervisor: Prof. Dr. Alexander Pretschner
Advisors: Markus Schnappinger, Dr. Arnaud Fietzke
Submission Date: 08.05.2019

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 08.05.2019 Christian Feiler

Acknowledgments

This thesis was created in cooperation with itestra GmbH. Insights into software
health checks and hardware provided by itestra GmbH were highly appreciated and
enabled the realization of this work. I would also like to thank the staff of the Chair of
Software and Systems Engineering at the Technical University of Munich and especially
Prof. Dr. Alexander Pretschner for their feedback and supply of additional hardware.

I am particularly grateful for the assistance given by my advisors Markus Schnap-
pinger and Dr. Arnaud Fietzke. Their professional guidance ensured the outcome of
this thesis. They constantly provided valuable advice and also data for the evaluation.

Abstract

Machine learning evolves in many areas as valuable data processing assistance. Recent
work translates the application of machine learning to the field of software analysis
in order to imitate the human comprehension of source code. A major challenge
when learning from software is posed by the hierarchical nature of software that goes
along with the variable size of source code. This hinders the application of arbitrary
machine learning algorithms and causes the need for specifically designed and complex
algorithms that lack flexibility.

In order to allow the flexible application of machine learning algorithms across
application areas, this thesis presents a methodology for generating latent vectors for
software elements. The vectors can then serve as input to arbitrary algorithms. The
proposed methodology produces the vectors by transforming source code to graphs
and gently aligning the graphs with software characteristics. Since supervised learning
is employed for the alignment, the characteristics are provided by exemplary data in
form of a labeled dataset that is created according to the application area. The resulting
vector representations will embed the characteristics in a distributed manner.

The applicability of the proposed methodology was tested for the field of software
health checks. By providing a dataset that captures the expertise of professional
code reviewers, several Java classes which are part of the JSweet project and lack
maintainability were successfully detected by the use of the generated, latent vectors.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Related Work 3

3. Research Question 5

4. Overview of the Approach 7
4.1. Source Code Levels . 7
4.2. Filtering of Source Code Levels . 8
4.3. Supervised Learning Setting . 9
4.4. Source Code as Machine Learning Input 10
4.5. Model for Vectorization . 10
4.6. Procedure . 12

5. Transforming Source Code to Graphs 13
5.1. Method Level . 14
5.2. Class Level . 17
5.3. Package Level . 20
5.4. Project Level . 20

6. Machine Learning Model 22
6.1. Encoder – Graph Attention Network . 22

6.1.1. Initial Vertex Vectors . 24
6.1.2. Final Vertex Vectors . 25
6.1.3. Graph Vector . 30

6.2. Decoder . 31
6.2.1. Single Label Classification . 33
6.2.2. Multilabel Classification . 34

6.3. Hyperparameters . 34
6.3.1. Vocabulary Limitation . 35

v

Contents

6.3.2. Graph Size Limitation . 36
6.3.3. Trainable Matrices Limitation . 37

7. Implementation 39
7.1. Graph Creation Program . 39

7.1.1. Parsing Library . 39
7.1.2. Structure . 40

7.2. Vectorizing Model Program . 41
7.2.1. Structure . 42
7.2.2. Execution Modes . 43

8. Application on Method Level 45
8.1. Experiment – Semantic Vectorization . 45

8.1.1. Label Creation . 45
8.1.2. Setup . 47
8.1.3. Results . 50
8.1.4. Interpretation . 51

8.2. Discussion . 52
8.2.1. Practicality of the Experiment . 52
8.2.2. Usage Example . 53

9. Application on Class Level 57
9.1. Experiment – Maintainability Forecasting 57

9.1.1. Label Creation . 57
9.1.2. Setup . 58
9.1.3. Results . 60

9.2. Discussion . 60

10. Future Work 63

11. Conclusion 65

A. List of Abbreviations 66

B. OpenJDK 8 AST Nodes 67

C. Method Level Model Configuration 69

D. Method Similarity in Guava 70

E. Class Level Model Configuration 75

vi

Contents

F. Findings in JSweet 76

List of Figures 79

List of Tables 81

Bibliography 82

vii

1. Introduction

At itestra GmbH, software health checks are offered that ”comprehensively check
existing software systems”.1 They also assess the maintainability and overall software
quality in order to ”reveal cost drivers”.1 Consequently, they normally rely on heavy
source code inspection as software systems are the basis of the checks. However,
manual inspections are labor-intensive and hence protracted so that reliable assistance
in form of tools could accelerate this process.

Existing tooling like ConQAT allows amongst other functionalities to compute
software quality metrics [Dei+10] and is a basic help during health checks due to its
inclusion of quality measurements: the attention of an IT consultant at itestra GmbH is
drawn to weak spots in an existing software system. However, tooling like ConQAT
does not exceed beyond the description as a basic help since measurements like quality
metrics often produce false positives or false negatives when trying to draw the attention
to relevant parts in a software system. This comes due to the fact that the experience
and proficiency of an IT consultant can not be matched with tools that are unable to
grasp the semantics in source code but rather rely on metrics.

As a result, tooling which combines the predictive approach of ConQAT and the
knowledge of code reviewers can enrich the health check process by smartly highlight-
ing weak or interesting spots of code bases that have not been seen by a consultant
yet. Interesting spots during a software health check can be for example snippets that
lack maintainability. Supervised machine learning addresses the issue of capturing
experience since it tries to align observed properties to sample data [Bis06]. The result
of this machine learning (ML) process will be an adapted ML model which implicitly
represents the judgment and allows the prediction of properties for new data. Adopting
this methodology to source code would allow the prediction of software characteristics:
instead of any exemplary data, the supervised machine learning will receive source
code as input. The source code will then be aligned to observed characteristics, e.g., the
lack of maintainability. Consequently, the adapted model could be used for smartly
highlighting spots in code bases.

However, traditional machine learning algorithms like support vector machines
(SVMs) expect data of fixed length from which they then try to construct infer-
ences [SS01]. In contrast, source code is normally of variable length and hence can not

1https://itestra.com/en/leistungen/software-healthcheck/

1

https://itestra.com/en/leistungen/software-healthcheck/

1. Introduction

serve as input for any arbitrary supervised ML algorithm. Recent work by Allamanis
et al. [ABK17] or Alon et al. [ALY18] tackles this limitation with specific ML models
which work on source code. Their approaches are restricted to specific application
areas though as they attempt to compute natural language (NL) sequences from code.
These sequences can be descriptions of the code for instance. With their approaches,
the flexibility of employing different supervised ML algorithms is neglected: apart
from the prediction of natural language sequences, supervised ML algorithms could be
deployed for other tasks as well, e.g., for the classification of source code. According to
the applied algorithm, different facets of a consultant’s experience might be captured.
Consequently, employing diverse ML algorithms might result in a powerful tool when
their results are combined.

In order to apply arbitrary machine learning algorithms and models on software,
the software has to be transformed to a fixed length representation first. The resulting
fixed length representation would be a vector that embeds information in a distributed
manner: the meaning of the vector evolves through the combination of its dimensions
so that infinitely many instances can be stored in a finite vector space [RM87]. The
contribution of this thesis is the creation of such a representation for software. The
vector representation will be solely based on source code so that other artifacts like
binaries do not have to be provided. Since the vectors will be computed with supervised
machine learning, the embedded information is gathered according to representative
source code and depends on the intuition and experience of the code reviewer who
delivered the data. Thus, the vectors will embed knowledge as it is acquired from
previous software health checks and can overcome the limitations of current tooling like
ConQAT: tools like ConQAT only rely on metrics and do not incorporate the experience
of code reviewers in their analysis. The broad variety of ML algorithms allows further
processing of the vectors so that the application in the software health check can be
tuned gently. Since the exemplary data for the supervised learning does not necessarily
have to be related to health checks, the outcome of this thesis can be applied for diverse
source code analyses.

Chapter 2 will give an insight in recent approaches of how machine learning can
be applied on source code. Followed by Chapter 3, the differing application area of
our thesis, the contribution of this work and its novelty are described. Chapter 4
outlines the general approach in this thesis. The representation of source code for the
machine learning approach is discussed in Chapter 5. The explanation of the approach
is concluded with a detailed introduction of our machine learning model in Chapter 6.
Implementational details of the approach can be found in Chapter 7. In order to assess
the practicality of our methodology, Chapter 8 and Chapter 9 present experiments
and discuss their results. The work finishes with motivations for future research in
Chapter 10 and a conclusion in Chapter 11.

2

2. Related Work

There exists several recent work about machine learning on software where the respec-
tive publications differ in their application areas, their machine learning setting, the
employed ML algorithms and their representation of source code for the algorithms.

For building a language model from source code, Dam et al. [DTP16] implement a
deep learning model that reads source code as a sequence of words similar to natural
language processing models. It is based on a long short-term memory (LSTM) proposed
by Hochreiter et al. [HS97]. The deep learning model is evaluated on the ability to
predict the next word for a preceding sequence of words within a code snippet. The
application area differs from our motivation to that point that the methodology of
Dam et al. does not attempt to summarize the information in a code snippet but
rather tries to assist during the programming by incrementally suggesting the next
token. Interpreting source code as a form of natural language is also implemented by
Allamanis et al. [APS16]. They built a convolutional network which is enriched with
an attention mechanism in order to actually summarize the knowledge within code
snippets. The convolutional network is optimized towards sequence prediction and is
evaluated on the prediction of Java method names.

Since source code is normally not directly interpreted as natural language but as a
structured entity, other related work transforms source code to synthetic, structured
objects. For generally learning from source code, Alon et al. [Alo+18a] propose a
representation that is purely syntactic and extracted from the abstract syntax tree
(AST). The result are paths in the AST. Even though this representation captures the
hierarchical nature of source code, other information might have to be learnt by a
model that uses the path-based mapping of the code. For instance, the cross-referencing
of variables is not obvious in the AST and has to be identified by the model. An
application of the path-based representation is given in a further publication by Alon
et al. [Alo+18b] where the synthetic paths in the AST are processed by a neural
network and weighted by an attention mechanism. The model is called code2vec and the
evaluation is based on the ability to predict Java method names. The code2seq of Alon
et al. [ALY18] proceeds and optimizes the idea of code2vec: it uses an LSTM instead of a
simple neural network and aims for a sequential prediction of software characteristics.

In contrast to the path-based mapping, Henkel et al. [Hen+18] make use of traces
collected from symbolic executions. These traces facilitate the extraction of the locality

3

2. Related Work

and usual contexts of declarations. In contrast to most of the related work, this approach
is employed in an unsupervised ML setting by applying the skip-gram model [Mik+13].
It is important to notice that the transformation of software to traces causes the machine
learning input to be not close to the source code: the actual structuring of the code is not
apparent anymore. Depending on the application area, this might be disadvantageous.

Similar to Henkel et al., Ben-Hun et al. [BJH18] apply the skip-gram model. They
chose to use an intermediate representation (IR) of source code as input to the skip-gram
model. With this approach, the usual contexts of instructions are identified. Thereby,
instructions in source code can be assigned to semantic categories. The representation
of software with an IR is not close to the original code either.

In order to automatically detect misused variables in Java, Allamanis et al. [ABK17]
create graphs which serve as machine learning input. Such a graph is built on top of
the AST: it is essentially an extension of the AST which contains additional edges for
referencing where a variable was last used and for indicating the execution order of the
statements. A Java type representation is incorporated as well. The final graph is then
processed by a gated graph neural network (GG-NN) [Li+15].

4

3. Research Question

The goal of thesis is to embed latent information in source code in a vector of fixed
length. This information can be any characteristics that a code reviewer can identify
when inspecting source code, e.g., the semantics, the degree of maintainability or
a combination of both. The resulting vectors have to allow further analyses with
diverse machine learning algorithms. The intended application during software health
checks makes this work unique. In order to achieve the above mentioned goal, the
research questions (RQs) below arise. The approach of this thesis attempts to solve
these questions in an optimal way in order to achieve the overall goal.

RQ1: Which algorithm is suited best for the computation of vectors from source
code?

The developed algorithm has to cope with source code and output vectors for source
code elements. Additionally, the algorithm has to allow the tuning of the vectors
according to characteristics which might be relevant during a software health check.
Due to the differing application areas, the algorithms in related work might not be able
to capture the experience of a code reviewer. Consequently, we investigate to which
extent the tuned vectors of our algorithm are meaningful for diverse application areas.
The algorithm itself can be composed of several other algorithms. For instance, we
analyze whether a preliminary transformation of source code – which is given as a set
of NL sequences – to another representation enhances the later computation of health
check related vectors.

RQ2: Which source code elements are suitable for an automated software analysis?

Different granularities of elements can be distinguished in source code. When analyzing
code in an object oriented language, vectors could be created for methods, classes or
other granularities. In contrast to most examples in related work, the outcome of this
thesis has to be generally applicable and is not designed for solving a specific task
like method name suggestion. Consequently, we investigate different granularities.
According to the aforementioned motivation, the vectorization has to be done for source
code elements which optimally benefit an analysis of software projects: a trade-off
between level of detail and availability of contextual information has to be found.

5

3. Research Question

RQ3: Which characteristics can be vectorized?

The aim of the thesis is to embed knowledge about source code in a latent vector. In
order to ensure the general applicability, we analyze if and which software characteris-
tics are obvious in the vectors and can be successfully identified by machine learning
methods that are applied to the vectors.

6

4. Overview of the Approach

The goal of this thesis is to compute vectors from source code. These vectors are
considered to be distributed representations of fixed length that capture the character-
istics of the software. As highlighted in Figure 4.1, further machine learning models
can be applied to the resulting vectors, e.g., unsupervised clustering algorithms. The
intermediate model which establishes the distributed representation solves the problem
that many models like decision trees can not cope with variable-length input but need a
fixed-length input. With the help of the vectors, these models can be indirectly applied
to software. We will refer to the intermediate model as vectorizing model. The following
sections explain the scope of and the approach for the vectorizing model.

4.1. Source Code Levels

In order to create a distributed representation for source code in the form of vectors,
the first step is to decide which kind of source code is considered. Since Java is one
of most used and most popular programming languages1 2, our approach is based on
software that is written in Java. Please note that only versions up to Java 8 are taken
into account. The methodology of this thesis can however be easily extended in order
to support other object-oriented programming languages.

For the purpose of vectorizing source code, one has to specify for which parts of the
code vectors have to be created. With Java being the inspected programming language,
different granularities of the source code are considered:

• Methods

• Classes

• Packages

• Projects

With the term project we refer to a set of Java packages where each of them either
depends on another package or is needed by another one. We will refer to the above

1https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
2https://www.tiobe.com/tiobe-index/

7

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://www.tiobe.com/tiobe-index/

4. Overview of the Approach

Figure 4.1.: The vectorizing model is the focus of this thesis. Machine learning models
that are applied to the vectors are indirectly applied to the software.

mentioned granularities as source code level, too. Each of these levels can contain crucial
information, e.g., about the maintainability of software. Therefore, vectors will be
created for each of the above mentioned granularities. Other machine learning models
can then be applied to the resulting vectors, e.g., clustering can be executed on the
vectors of Java classes in order to group them by readability. The computed vectors are
essentially a representation for entities in the source code levels. Even though variables
that are declared in a class or a method body might yield additional information in
some cases, this information might be not relevant without the class or method context
in most cases so that we neglect the option to specifically learn vector representations
for variables.

The vectors will be computed with the vectorizing model which is a machine learning
model, i.e., an adaptive model that can be optimized [Bis06]. However, the information
that can be retrieved from the source code levels differs for each level, e.g., the main-
tainability of a Java method can be heavily impacted by the statement nesting depth of
the method whereas the maintainability of a Java package will be impacted more by
coupling within the package than by the nesting depth. As a result, a single model will
not be powerful enough to distinctively embed information for each of the source code
levels. In order to overcome this issue, an individual machine learning model will be
trained for methods, classes, packages and projects respectively. Therefore, each of the
levels is investigated independently.

4.2. Filtering of Source Code Levels

For the method and class level, we only consider methods and classes that fulfill the
conditions that are explained below. Some instances are filtered out since they do not

8

4. Overview of the Approach

contain sufficient information in order to supply additional knowledge, e.g., during a
health check.

For methods, this means first of all that they must not be abstract. The reason for
this is that abstract methods do not contain a method body. Hence, they normally do
not embed valuable latent information. Even though constructors do have a similar
structure to methods, we introduce the condition that methods must not be constructors
either. This is due to the fact that constructors are tightly coupled to their classes and
appear out of context if they are inspected individually. Additionally, constructors
usually deviate in their semantics and nature highly from other methods. Finally,
method declarations that occur within another method declaration are not considered:
these methods are already captured by their surrounding method. An example where
such nested methods can occur in Java are anonymous classes which are defined in a
method and contain other methods in turn.

Not all classes are taken into consideration either. For instance, interfaces are filtered
out even though their structure resembles the structure of classes. This makes sense as
interfaces normally do not contain an implementation similarly to abstract methods.
In contrast, enums are regarded as classes and are part of the class level as they can
contain method implementations in Java. Another constraint is that only top level
classes are considered, i.e., nested classes are not processed: nested classes are captured
by their surrounding instance which is normally another class.

4.3. Supervised Learning Setting

The goal of the vectorization is to store characteristics of the source code in a distributed
representation. Characteristics can be for example the semantics or the comprehensibil-
ity of the source code. Since characteristics like quality attributes are often ambiguous
and established by experience, the vectorizing model has to be provided with a labeled
dataset, i.e., the vectors will be created with supervised learning. The labeled data
contains examples for the properties which are supposed to be embedded in the dis-
tributed representation: if the vectors should be created according to the readability of
methods, the dataset will contain methods for which a person assessed the readability.
Consequently, the distributed representation will be biased towards the intuition and
experience of the human that provided the data. With a set of examples provided,
the vectorizing model will then be trained so that the resulting vectors reveal the
characteristics in the examples in an optimal way.

9

4. Overview of the Approach

4.4. Source Code as Machine Learning Input

In contrast to natural language, source code is not interpreted as a linear sequence
of tokens. It is rather comprehended as a tree or a forest that is mapped from a
sequence of tokens according to the syntax of the programming language. Additionally,
the definitions in the code interact with and depend on each other. Consequently,
programmers who attempt to identify properties in source code are aware of the Java
syntax and other specific rules that make source code valid. Without the knowledge
regarding the rules and the nature of the programming language, it is difficult to
identify characteristics of the code. Therefore, it is advantageous to transfer the
knowledge about specific programming rules to the machine learning model. Since it is
not possible to store a set of rules in the machine learning model before it is trained, the
rules have to be supplied differently. The best way to do so is to provide the data from
which the model learns on a higher level of abstraction: methods, classes, packages and
projects respectively are not given to the machine learning model as a token sequence
like natural language but as structured objects. The structure then contains information
that is obvious to programmers, e.g., the hierarchical nature of Java. In this thesis, we
decided to use directed graphs as the representation of source code. The details of how
the graphs are created from methods, classes, packages and projects respectively are
explained in Chapter 5.

4.5. Model for Vectorization

As previously mentioned, individual machine learning models will be trained for the
source code levels. This does not mean that for each level a new model is introduced,
but it means that the same model will be trained separately for methods, classes,
packages and projects respectively. The vectorizing model itself is loosely based on
the encoder-decoder framework which enjoys great popularity in the field of neural
machine translation [BCB14]. The encoder-decoder framework joins the encoder and the
decoder by a hidden representation, i.e., a fixed-length vector [Cho+14]. The encoder
maps the input sample to the hidden representation whereas the decoder attempts to
predict the properties of the sample from the hidden representation. The encoder and
decoder respectively can be individual neural networks.

We utilize the fixed-length vector in order to be the distributed representation for
the input of the model as shown in Figure 4.2. This means that the whole model is
trained by applying gradient based optimization as proposed by Kingma et al. [KB14]
and that the decoding is left out for the prediction of the distributed representation.
In our case, the sample that is forwarded to the model is a graph that represents an

10

4. Overview of the Approach

Figure 4.2.: The vectorizing model is based on the encoder-decoder framework that
connects the encoder and the decoder by a fixed-length vector. During
the training phase of the model, the encoder and decoder are optimized
according to the given combinations of graphs and properties. For the
vectorization of a graph, the decoder is omitted.

entity within a source code level. Traditionally, the encoder and decoder are recurrent
neural networks (RNNs) that are neural networks which cope with sequences, but are
typically unable to handle graphs [Jai+16]. As a result, the encoder will not be an RNN
but a neural network that is able to handle graphs. The used neural network is inspired
by the encoder in the Graph2Seq model [Xu+18] which employs attention mechanisms
in order to distinguish crucial and less important information in the input graph. A
RNN was neither employed as the decoder in this thesis: recurrent neural networks as
decoder are used for the prediction of sequences. In our setting however, the software
properties which should be encoded are normally available as an unordered set of
categories or as a single category per sample. Additionally, the hidden representation
that is optimized towards a RNN decoder does not allow a simple inference about the
exact meaning of the representation since the RNN transforms the representation in a
non-linear way for the prediction. An alternative to the RNN that we will employ is to
use a single transformation matrix as the decoder. This allows deductions about the
vector in between the encoder and decoder. As this vector is the focus of this work, the
deductions might come in handy during subsequent analyses of the vector. Using a
transformation matrix is inspired by latent factors models [BKV09]. More information
about our machine learning model can be found in Chapter 6.

11

4. Overview of the Approach

4.6. Procedure

The whole methodology of vectorizing parts of a software can be summarized as
follows:

1. A source code level has to be chosen for which a distributed representation is
needed. Further machine learning algorithms can be applied on the resulting
vectors. In the subsequent enumeration we will assume that methods are the
chosen source code level. For other levels, the following steps are valid as well.

2. A training dataset has to be created. The dataset contains methods that have
properties assigned to them. These properties might consist of a single label or a
set of labels, i.e., multiclass and multilabel classification are supported.3

3. The methods of the training set are transformed to directed graphs. The directed
graphs serve as structured objects that implicitly store information about the
characteristics of the source code. Details about this are available in Chapter 5.

4. The vectorizing model is trained with a set of tuples where each tuple consists of
a graph and the corresponding method properties. Chapter 6 depicts the specifics
of the model.

5. As shown in Figure 4.2, vectors for new method graphs can be computed with
the optimized model.

3https://scikit-learn.org/stable/modules/multiclass.html

12

https://scikit-learn.org/stable/modules/multiclass.html

5. Transforming Source Code to Graphs

The nature of the input for a machine learning model can heavily influence its perfor-
mance [KKP07]. If correlations between the input and the expected labels are hard to
detect, the model will perform badly. Therefore, the transformation of Java source code
before the model is applied has to be chosen well so that meaningful vectors will be
produced.

Previous work by Allamanis et al. [ABK17] takes the AST as basis for a machine
learning model: the AST of code snippets is transformed to a directed graph which
is extended with additional edges. These edges reference where a variable was last
used and indicate the execution order of the statement in the code. A Java type
representation is incorporated in the graphs as well. These extensions of the AST
can enhance the machine learning performance, e.g., with respect to the capturing of
software maintainability. Since this graph representation is based on the AST, it is
close to the actual source code which is also important when gathering knowledge
that should be helpful during a software health check. Therefore, our representation is
inspired by this approach. Due to the differing areas of application, the methodology
of Allamanis et al. [ABK17] also embeds knowledge that is not needed in our setting.
This results in graphs of bigger size which in return would affect the scalability of
the vectorizing model. Consequently, we will not employ the graph representation
proposed by Allamanis et al. but create graphs based on their approach.

As a summary of the above, a good choice for the source code representation should
be close to the original code and contain information that is obvious to programmers
but not to a person that has no experience with the particular programming language.
This means that as much knowledge as possible about the meaning of the source
code should be included in the input of the machine learning model. Despite that,
the representation should be of reasonable size so that the scalability of the machine
learning algorithm is not jeopardized.

In this chapter, we propose a transformation of the source code that fulfills the
aforesaid. The resulting representation will be a directed graph. The following sections
discuss the transformation for each of the source code levels.

13

5. Transforming Source Code to Graphs

public String setAndGetProperty(String newValue) {

classProperty = newValue;

return classProperty;

}

Figure 5.1.: An exemplary method.

5.1. Method Level

Methods form the actual behavior of programs, e.g., handling communications or data
manipulation. Therefore, they build an essential foundation for analyzing software.
Due to their nature, a purely hierarchical representation of methods might produce
poor results when machine learning is applied to it: the control and data flow should
be encoded as well. The basis for our representation of methods is the AST which is
a purely hierarchical structure. It will be extended with nodes and edges in order to
capture the additional aspects. Each node in the resulting graph can have multiple
labels – also referred to as attributes – and each edge will have exactly one label. We
will distinguish the two steps transformation step and extension step.

The transformation step converts the AST to a directed graph which is done by
directing the edges in the tree towards the parent node. These edges are labeled
as PARENT. Figure 5.1 gives a simple example of a Java method. The result of the
transformation step for it is shown in Figure 5.2. The graph after the transformation
step has some peculiarities:

• Since the syntax tree is extracted from OpenJDK 8 internals, the structure of
the graph corresponds to the internal representation of source code in the Java
development kit. Other parsers like JavaParser1 would produce a different tree.
The extension step can be adapted for them though.

• The labels of the nodes are also created from the internals of the java development
kit (JDK). The AST in the JDK is represented by a nested structure of Java classes.
As a result, each node in our graph contains exactly one label which is the name
of the Java class that captures the subtree attached to it.2 An exception is the
labeling of nodes that contain JCModifiers: these nodes can contain additional
attributes as the actual modifiers are appended. An example is the blue node in
Figure 5.2 that has two labels: JCModifiers and PUBLIC.

1http://javaparser.org/
2The prefix JC in the labels refers to javac.

14

http://javaparser.org/

5. Transforming Source Code to Graphs

JCMethodDecl

set and get property

 NAME

JCModifiers PUBLIC

 PARENT

JCIdent

 PARENT

JCVariableDecl

 PARENT

JCIdent

 USAGE

new value

 NAME

JCModifiers

 PARENT

JCIdent

 PARENT

JCBlock

 PARENT

JCExpressionStatement

 PARENT JCReturn

 NEXT

JCAssign

 PARENT

JCIdent

 PARENT PARENT

 PARENT

JCIdent

 PARENT

string JCClassDecl

 OUTSIDE_USAGE OUTSIDE_USAGE

class property JCVariableDecl

 OUTSIDE_USAGE OUTSIDE_USAGE

Figure 5.2.: The AST is the basis for the method graph. In this figure, the AST of the
method in Figure 5.1 is illustrated as a directed graph.

All node types that can occur in the directed graph after the transformation step are
listed in Appendix B.

After generating a directed graph, additional nodes and edges are inserted in the
extension step. The result for the method in Figure 5.1 is illustrated in Figure 5.3 where
the additional nodes and edges are highlighted in color. First of all, the execution order
of statements is indicated by adding links labeled as NEXT. These links interconnect
pairs of consecutive children of a JCBlock. These children always represent Java state-
ments and are ordered according to their occurrence in the source code. In Figure 5.3,
only one such link exists and is colored orange: it indicates that JCExpressionStatement
is executed before JCReturn. The NEXT edges are necessary due the fact that there is
no order for adjacent vertices in a purely mathematical graph so that the succession of
Java statements is not obvious anymore.

For comprehending source code, a lot of information is contained in the naming

15

5. Transforming Source Code to Graphs

JCMethodDecl

set and get property

 NAME

JCModifiers PUBLIC

 PARENT

JCIdent

 PARENT

JCVariableDecl

 PARENT

JCIdent

 USAGE

new value

 NAME

JCModifiers

 PARENT

JCIdent

 PARENT

JCBlock

 PARENT

JCExpressionStatement

 PARENT JCReturn

 NEXT

JCAssign

 PARENT

JCIdent

 PARENT PARENT

 PARENT

JCIdent

 PARENT

string JCClassDecl

 OUTSIDE_USAGE OUTSIDE_USAGE

class property JCVariableDecl

 OUTSIDE_USAGE OUTSIDE_USAGE

Figure 5.3.: The final graph for the method in Figure 5.1. Nodes and edges that were
added to the graph in Figure 5.2 are highlighted in color.

of identifiers [DP05]. In the AST however, there are no names included as visualized
in Figure 5.2. Hence, the naming of declarations is added to the graphs in form of a
separate node that is attached to the declaration with a NAME edge. These amendments
are colored blue in Figure 5.3. The new nodes can have multiple attributes which are the
words that arise from splitting the identifier names according to camel case and snake
case. The resulting words are generally transformed to lower case. As an example,
setAndGetProperty in Figure 5.1 is split into set, and, get and property in Figure 5.3. Please
note that there are only three different types of declarations in the AST: JCClassDecl,
JCMethodDecl and JCVariableDecl. Therefore, only these three nodes can have names
attached to them.

16

5. Transforming Source Code to Graphs

The data flow within a program reveals a lot of information about its semantics. The
flow can be traced by inspecting the reuse of declarations in the source code, more
specifically in the methods. The following node types indicate a reuse:

• JCIdent

• JCFieldAccess

• JCMemberReference

• JCNewClass

We will refer to these vertices as referencing nodes. In order to help the machine
learning model understanding the semantics of software, we add links from declarations
towards referencing nodes so that their nature and origin become apparent and the
data manipulation in a program gets obvious. Since not every declaration is made in
the AST of the method as the variable classProperty in Figure 5.1 proves, we differentiate
between two different edges towards referencing nodes: USAGE and OUTSIDE_USAGE.
If the declaration from which the edge originates happens in a method, we will add
the USAGE link towards the referencing node as the declaration is already available
in the AST. An example is the reuse of the method parameter in Figure 5.3 which is
highlighted in red. Otherwise, we will use OUTSIDE_USAGE. However, the linked
declaration has to be made available first. This is done by adding a new vertex to the
graph for the declaration. The attributes of the vertex consist of the declaration type and
the tokens that result from splitting the name of the declaration according to camel and
snake case. The declaration type is either JCClassDecl or JCMethodDecl or JCVariableDecl.
The OUTSIDE_USAGE edges will then be injected with the newly created vertex as
source and each of the corresponding, referencing nodes as a destination. The thereby
injected vertices and edges are colored purple in Figure 5.3.

No further additions are made in the extension step. Advanced modifications could
be realized, of course. For instance, the final graph in Figure 5.3 does not allow
inferences about which identifier is assigned to which one at the JCAssign node – even
though the code in Figure 5.1 makes clear that newValue is assigned to classProperty.
As a result, our graphs are not isomorphic to the interpreted source code of a method.
Nevertheless, the aforesaid alternations of the AST build a reasonable trade-off between
simplicity and availability of information.

5.2. Class Level

For building graphs from Java classes, we distinguish two approaches: the non-
truncated and the truncated graph.

17

5. Transforming Source Code to Graphs

public class ExampleClass {

private String someString;

ExampleClass() {

super();

someString = "asdf";

}

public String getSomeString() {

return someString;

}

}

Figure 5.4.: An exemplary class.

The non-truncated graph results from applying the transformation and extension
step of Section 5.1 onto the AST of a Java class:

1. At first, a directed graph is established from the AST of the class as mentioned in
Section 5.1. The root node is then JCClassDecl instead of JCMethodDecl.

2. The NEXT edges will be inserted afterwards to highlight the execution order of
statements in methods that are defined in the class.

3. The names of all declarations in the class are attached to the graph as additional
vertices. The NAME links are created towards the corresponding declarations.

4. The data flow is indicated by USAGE and OUTSIDE_USAGE. If the declaration for
a referencing node is made within the class, the USAGE linkage is employed. For
declarations that happen outside of the class, a new vertex will be created in the
same way as mentioned in Section 5.1. OUTSIDE_USAGE will then interconnect
the new vertices and the referencing nodes.

The disadvantage of this approach is the size of the resulting graph: it can consist
of multiple thousands of nodes. Graphs of this dimension will heavily slow down
the machine learning algorithm. For instance, the non-truncated graph of the class in
Figure 5.4 contains 27 nodes – even though the class is minimalist. Furthermore, the
outcome of the machine learning model can be worse for huge inputs since it is harder
for the model to identify important parts in the graph. Nevertheless, the non-truncated

18

5. Transforming Source Code to Graphs

JCClassDecl

JCModifiers PUBLIC

PARENT

JCVariableDecl

PARENT

JCModifiers PRIVATE

PARENT

JCIdent

PARENT

JCMethodDecl

PARENT

JCModifiers

PARENT

JCBlock

PARENT

...

PARENT

...

PARENT

JCMethodDecl

PARENT

JCModifiers PUBLIC

PARENT

JCIdent

PARENT

JCBlock

PARENT

Figure 5.5.: The figure shows the truncated graph after the transformation step for the
class in Figure 5.4. The children of the blue JCBlock were cut away. Some
other subgraphs were omitted due to their irrelevance. The omittance is
indicated by ellipses. As constructors are also referred to as methods in the
OpenJDK, the leftmost JCMethodDecl node is the constructor of the class.

graphs make sense if the method level is not analyzed separately so that all available
information in the class should influence the vectors that are computed by the model.

As the denomination suggests, the truncated graphs are smaller than non-truncated
graphs. However, they are also based on the transformation and extension step of
Section 5.1. The main difference compared to the non-truncated graph is that the
truncated graph is cropped after the transformation step: the subgraphs that represent
method bodies are cut away. Please note that constructor bodies are not cut off but
remain part of the graph. An example Java class is shown in Figure 5.4. For this class,
Figure 5.5 highlights the node that is affected by the truncation. The extension step for
the residual graph is conducted as follows:

1. The NEXT links will be placed in the graph in order to connect statements. Since
all method bodies were cut off, only the constructor bodies have to be investigated
therefor.

2. The names of the remaining declarations in the graph will be attached as described
in Section 5.1.

3. The data manipulation in the leftover graph is also marked by USAGE and
OUTSIDE_USAGE edges. If a declaration that was not made in a method body
is reused in a method body, the residual JCBlock node will be the target of the
USAGE and OUTSIDE_USAGE edges since the content of the block is not available

19

5. Transforming Source Code to Graphs

anymore. Hence, the data usage in method bodies is captured even though the
bodies do not exist.

The cropping of method bodies can reduce the size of the class graphs tremendously.
The training time of the machine learning model decreases accordingly. Admittedly, the
nature of the methods and the procedures described by a class are no longer captured.
Thus, the truncated graphs should only be employed if the data passing on the class
level is important and the exact process of data mutation can be neglected. This is
normally the case when the method level is examined by a separate vectorizing model.

5.3. Package Level

Due to the fact that we did not have a dataset available for evaluating the package level
we did not implement the transformation of Java packages to graphs. Hence, we will
illustrate some factors that should be considered for this transformation. However, we
will not present a definite approach.

The above mentioned trade-off between size and information content of the graphs
amplifies for Java packages. Embedding explicit information about method behavior in
the package graph goes beyond the limits of magnitude which the machine learning
model can handle. Therefore, it is not possible to encode every piece of knowledge
within a Java package. Instead, the graph has to be focused on the data that is relevant
for the task which the machine learning model is used for.

Generally, a package in Java is a set of classes, enums, interfaces and nested packages.
There can be several motivations for analyzing a structure like this – especially during
a software health check. For instance, the structural organization and the dependencies
within the package might reveal misplaced classes so that the package should be
inspected manually during a review. These two aspects could be easily encapsulated
in a directed graph. A more complicated aspect is the semantics of the package as it
requires a deeper inspection of the contained classes. The semantics allows indeed
a more sophisticated evaluation of misplaced contents in the package. An approach
to embed semantics in the graph could be to integrate distributed representations of
methods and classes. These vectors can be computed in advance, e.g., by deploying the
methodology for vectorizing methods and classes as it is proposed in this thesis.

5.4. Project Level

Similarly to the package level, we did not implement the project graphs for the same
reason. We will again explain some thoughts about these graphs.

20

5. Transforming Source Code to Graphs

As mentioned in Chapter 4, we refer to a project as a set of Java packages where
each of these packages either depends on or is needed by at least one other package.
Knowledge that can be helpful for software health checks at this level includes the
architecture within the project where each package or subpackage depicts a component
in the software system. Therefore, the relation between the packages and subpackages
should be extractable from the project graphs. As a result, the coupling in the system is
contained in the graphs as well.

Similarly to the package graphs, semantics could be included by attaching precom-
puted vectors of classes to the graph. A possible realization is to average the calculated
vectors of classes for each package or subpackage and attach the average as a special
node to the graph. Semantics of methods can be included in a likewise manner. This
would allow the machine learning model to gain deeper knowledge about actual data
transfer and manipulation in the project.

21

6. Machine Learning Model

Our vectorizing model which is a machine learning model transforms the graphs from
Chapter 5 to a distributed representation according to characteristics of the source code.
Its trainable variables are learnt in multiple epochs with the optimizer proposed by
Kingma et al. [KB14]. For the optimization, we assume that a training dataset, which
consists of graphs and their corresponding labels, is given.

The model itself is based on the encoder-decoder framework where the encoder and
the decoder are only coupled by a hidden vector. Since both of them are optimized
together for an ideal prediction of the properties, the vector contains in the end all the
knowledge that is needed for the decoder in order to predict the attributes. Hence,
the hidden representation of the graphs will encode their properties in an optimal
way. Due to the fact that the goal of this thesis is to vectorize source code, the hidden
representation is the actual focus as shown in Figure 4.2. The decoder is only utilized
in order to impart meaning in the distributed representation.

The encoder and decoder which together build the vectorizing model will be dis-
cussed in the following sections.

6.1. Encoder – Graph Attention Network

The encoder is a neural network that is employed in order to grasp the information
which is stored in a graph and embed it in a vector. This neural network is loosely based
on the Graph2Seq model of Xu et al. [Xu+18]. The Graph2Seq model is essentially an
adoption of GG-NNs as introduced by Li et al. [Li+15]. The adoption is also extended
by an attention mechanism for better managing sequence prediction. The purpose of
such an attention mechanism is to search for important variables by aligning them with
a reference [BCB14]. The idea behind it can be compared with a human intuitively
attending over items: a human will pay more attention to items which seem special
or relevant for solving a specific task. Since our encoder copes with graphs and also
applies attention mechanisms, we will refer to the encoder as graph attention network,
too. Similarities to the Graph2Seq model will be mentioned later.

Before the specifics of the vectorizing model and its graph attention network are
illustrated, we create a custom formalization for the graphs of Chapter 5 as the graph
attention network retrieves them as input. At first, we define the vocabularies X and Y:

22

6. Machine Learning Model

• X = {x0, x1, . . . } is the set of all node labels. X will also be referred to as vertex
vocabulary or node vocabulary. The vertex vocabulary comprises all labels that can
possibly be attached to nodes in any graph. Theoretically, |X| = ∞ can hold true.
In practice, the size of the vocabulary will be limited. More information is given
later in Section 6.3.

• Y = {y0, y1, . . . } contains all edge labels. Y is called edge vocabulary, too. In
contrast to the vertex vocabulary, the size of Y is limited since we are only
working with method or class graphs. Therefore, the following will hold true:

Y ⊆ {PARENT, NEXT, NAME, USAGE, OUTSIDE_USAGE}

A method or class graph G is defined as a tuple (V, E):

• V is the set of vertices in the graph.

• E consists of the directed edges that interconnect the nodes in V.

For capturing the interrelations in the graph, we define the functions

s : E→ V and d : E→ V

where s(e) specifies the source node of an edge e ∈ E and d(e) its destination node
respectively. We also introduce the terms forward connectivity and backward connectivity.
The forward connectivity of a vertex v ∈ V is the set of links Fv ⊆ E that contains all
edges that originate at vertex v:

Fv = {e ∈ E|v = s(e)}

We define the backward connectivity Bv ⊆ E of a vertex v ∈ V correspondingly:

Bv = {e ∈ E|v = d(e)}

The labeling of nodes is captured by the function

L : V → P(X)

which returns the set of attributes for a given vertex. In contrast, edges have exactly
one attribute:

l : E→ Y

The graph attention network will then transform the formal graph G to a hidden
representation hG ∈ Rngraph which serves as input for the decoder. The dimension ngraph
is a hyperparameter and therefore fixed in advance. The methodology of the graph

23

6. Machine Learning Model

attention network consists of three major steps which are inspired by the steps in the
Graph2Seq model by Xu et al. [Xu+18]. However, the formulas and mathematical
processes in the graph attention network differ highly from those in the Graph2Seq
model: the computations were adapted to the graphs of Chapter 5. The three major
steps will be explained in detail in the subsequent subsections and can be summarized
as follows:

1. For each node v ∈ V, we learn a hidden representation h(0)v ∈ Rngraph that captures
the information about the node itself, i.e., h(0)v will be a latent vector that encodes
the vertex attributes.

2. The vector h(0)v will be updated in an iterative manner by incorporating informa-
tion about the neighborhood. The result after a fixed amount of k iterations is
h(k)v . Each h(k)v contains knowledge about the node v and its locality. An attention
mechanism will be employed in order to filter seemingly more relevant parts of
the neighborhood.

3. In the final step, a weighted sum will be computed from the node vectors:

hG = ∑
v∈V

wv × h(k)v

The weights wv ∈ R are determined by another attention mechanism: this
attention mechanism compares the node vectors and decides which nodes should
have the most influence on the graph vector hG.

Consequently, the distributed representation hG of a graph G embeds information
about the vertices that seem most important – i.e., they allow a good inference of
the graph labels – and their neighborhood. By translating this methodology to Java
method or class graphs, it becomes obvious that the graph attention network encodes
the context of the most relevant, atomic source code components for determining
properties in the software. Each of the three aforementioned actions as well as the
attention mechanisms will be illustrated in detail in the following subsections.

6.1.1. Initial Vertex Vectors

The first step is to assign a vector to each node that is based on the labels of the node.
This is done with the help of the embeddings matrix UX ∈ Rngraph×|X|. For each word
xi ∈ X, the embeddings matrix contains the column vector UX,i ∈ R that represents the
word with a meaningful vector. UX can be interpreted as a lookup table for the vertex
vocabulary. The embeddings matrix will be optimized during the training process of

24

6. Machine Learning Model

JCMethodDecl

JCIdent

new value

JCModifiers

JCIdent

...

...

...

...

JCVariableDecl

...

PARENT

USAGE

NAME

PARENT

PARENT

Figure 6.1.: A part of the method graph of Figure 5.3 is shown. Omitted subgraphs are
indicated with ellipses.

the vectorizing model so that the vocabulary embeddings do not have to be known
beforehand. The initial vertex vector h(0)v for a node v ∈ V is then the sum over its label
embeddings:

h(0)v = ∑
xi∈L(v)

UX,i

With the graph of Figure 6.1 as basis, Figure 6.2 illustrates the assignment of the initial
vectors for the nodes after their labels have been looked up.

6.1.2. Final Vertex Vectors

A major information in a graph is the connectivity between the different types of
nodes. Hence, the initial vertex vectors have to be updated with knowledge in their
neighborhood so that the encoder can understand the graph. This is done with an
iterative approach.

Prior to that, edges have to be assigned a latent representation similarly to the initial
vectors of nodes. Therefore, we define an embeddings matrix UY ∈ Rnedge×|Y| for the
edges: each edge label yi ∈ Y is mapped to a latent vector with its corresponding
column UY,i in the embeddings matrix. UY is also learnt during the model optimization.
The dimension nedge is a hyperparameter like ngraph. However, nedge and ngraph can
differ: the latent representation of edges can have a different dimension than the
representation of a graph or a vertex. Since there are way fewer different edge types
than node types in a method or class graph, a lower value for nedge is sufficient for
embedding the information of an edge. The hidden vector he for a link e ∈ E is
computed by the following equation:

he = UY,i with yi = l(e)

25

6. Machine Learning Model

h(0)v0

h(0)v12

h(0)v5

h(0)v6

h(0)v7

...

...

...

...

h(0)v4

...

he0

he2

he1

he0

he0

Figure 6.2.: The initial hidden representations were assigned to the nodes of Figure 6.1.
The edges have a latent vector as well. The indices enhance the distinction
of different values but have no deeper meaning.

Figure 6.2 shows the latent vectors of the edges, too.
Each iteration of the node representation update attempts to incorporate the infor-

mation of adjacent neighbors in the current vertex. The updating is repeated k times
with k being a hyperparameter. Although it is done for all vertices simultaneously, we
will illustrate the update by means of a single vertex v ∈ V.

Forward Neighborhood

At first, the forward neighborhood of v is inspected in an iteration j ∈ {1, . . . , k}. Each
neighbor and the link towards it respectively contain a hidden representation. These
vectors will be joined to a single vector with the help of a fully-connected layer which
is unbiased, i.e., the layer consists of a multiplication only and no constant vector is
added:

comb(j)
f or(e) = σ(W f or,j × [he, h(j−1)

d(e)]) (6.1)

The function comb(j)
f or represents the fully-connected layer. It returns the joined vector

for an edge and the destination vertex of the edge. There are new definitions and
notations introduced in Equation 6.1:

• [a, b, . . .] indicates the concatenation of vectors.

26

6. Machine Learning Model

• σ is an activation function. We will use a leaky rectified linear unit (ReLU) with
α = 0.2 for this purpose due to its enhanced convergence behavior [Xu+15]. The
leaky ReLU is defined as follows:

σ(x) =

{
x x ≥ 0

αx x < 0

• W f or,j ∈ Rngraph×(ngraph+nedge) is a weight matrix1 that is optimized during the
training of the vectorizing model. The index j suggests that there can be an
individual weight matrix for each iteration j. More information about the flexible
amount of weight matrices will be given in Section 6.3.

• The index f or refers to forward and is used in order to distinguish forward
neighborhood variables from the ones of the backward neighborhood aggregation
which is highlighted later.

Since not each edge in the forward connectivity might deliver equally relevant
knowledge to v, we assign weights to the forward edges with the function weight(j)

f or:

weight(j)
f or(v, e) =

〈
h(j−1)

v , A f or,j × comb(j)
f or(e)

〉
(6.2)

The function takes the result of the layer in Equation 6.1, transforms it linearly by
multiplying it with A f or,j and compares it to the latest hidden representation of a vertex
by calculating the dot product. The matrix A f or,j ∈ Rngraph×ngraph is also a weight matrix
which is optimized by the model. The index j indicates yet again that there can be an
individual matrix for each iteration j.

Since the dot product computes the cosine similarity, the information comb(j)
f or(e)

gathered from a forward connection e ∈ E retrieves a greater weight in Equation 6.2
if it is more similar to the latest representation h(j−1)

v of the current vertex v ∈ V.
Informally expressed, forward connections which are more similar to the current vertex
are considered to be more relevant. In order to allow the vectorizing model more
flexibility during the similarity measurement, the linear transformation with A f or,j is
introduced which can alter the result of Equation 6.1 before the similarity is calculated.

Equation 6.2 implements the general attention mechanism which was proposed by
Luong et al. [LPM15]. As mentioned above, the purpose of an attention mechanism is
to search for important variables by aligning them with a reference [BCB14]. In this

1The terms weights and weight matrix have different meanings in this thesis. A weight is a scalar that
indicates the relevancy of a variable, e.g., in a weighted sum whereas a weight matrix is trainable and
used as a transformation matrix, e.g., in a layer of a neural network.

27

6. Machine Learning Model

case, the variables are the forward connections of v whereas the reference is the latest
vector representation of v. Please note that the attention mechanism in Equation 6.2 is
employed independently of the one that is explained later in Subsection 6.1.3 and that
calculates the importance of the nodes in order to create a graph vector.

The weights returned by weight(j)
f or are then scaled to values in [0, 1] with the softmax

function:

att(j)
f or(v, e) =

exp(weight(j)
f or(v, e))

∑ei∈Fv
exp(weight(j)

f or(v, ei))

The result of the function att(j)
f or indicates the importance of a node as it is determined

by the general attention mechanism of Luong et al. [LPM15]. Consequently, the forward
neighborhood of the vertex v is gathered in a single vector h(j)

f or,v which is a weighted
sum over the connections:

h(j)
f or,v = ∑

e∈Fv

att(j)
f or(v, e)× comb(j)

f or(e)

The idea behind the attention weights returned by att(j)
f or is that more similar connec-

tions appear more relevant and should be dominant in the forward neighborhood
as this might enhance a convergence of the vertex representations in the graph. The
above mentioned attention mechanism achieves that by gently aligning each forward
connection with the current vertex v ∈ V.

Backward Neighborhood

The backward neighborhood of v is aggregated with the exact same methodology so
that the vector h(j)

bac,v ∈ Rngraph emerges for an iteration j. In order to distinguish the
variables and functions from the forward neighborhood, the index f or is replaced with
bac in the backward neighborhood aggregation. Figure 6.3 highlights the forward and
backward neighborhood vectors for an exemplary vertex. The scope of the aggregated
information is darkened. The following equations summarize the computations for the
backward neighborhood:

28

6. Machine Learning Model

h(j)
f or,v4

h(j)
bac,v4

h(j−1)
v0

h(j−1)
v12

h(j−1)
v5

h(j−1)
v6

h(j−1)
v7

...

...

...

...

h(j−1)
v4

...

he0

he2

he1

he0

he0

Figure 6.3.: The figure illustrates the aggregation of the forward and backward neigh-
borhood of a vertex. The graph is the one shown in Figure 6.2. Vertex v4

was chosen exemplarily.

h(j)
bac,v = ∑

e∈Bv

att(j)
bac(v, e)× comb(j)

bac(e)

att(j)
bac(v, e) =

exp(weight(j)
bac(v, e))

∑ei∈Bv
exp(weight(j)

bac(v, ei))

weight(j)
bac(v, e) =

〈
h(j−1)

v , Abac,j × comb(j)
bac(e)

〉
comb(j)

bac(e) = σ(Wbac,j × [he, h(j−1)
s(e)])

Incorporation of the Neighborhood

The last action in the iteration j is to integrate the neighborhood information in the
latest vertex representation of v. This is done with an unbiased, fully-connected layer.
The inputs to this layer are three vectors: the backward neighborhood vector of the

29

6. Machine Learning Model

current iteration j, the vertex vector of the previous iteration j− 1 and the forward
neighborhood vector also of the current iteration j. The new node vector is reckoned as
follows:

h(j)
v = σ(Winc,j × [h(j)

bac,v, h(j−1)
v , h(j)

f or,v])

Similar to Equation 6.1, σ is a leaky ReLU. Winc,j ∈ Rngraph×3ngraph is a weight matrix and
will be adapted during the optimization.2 Similarly to the matrices W f or,j, Wbac,j, A f or,j
and Abac,j, a different weight matrix can be learnt for each iteration.

Even though only adjacent neighbors are taken into account during an iteration,
knowledge of distant vertices can be forwarded to v through its adjacent nodes as they
might have retrieved information during previous iterations. As the updating is done
for all nodes in the graph simultaneously, the vertex vectors can contain information
about nodes that are up to k hops away. After the final iteration, all nodes v ∈ V
consist of a hidden representation h(k)v that has evolved from their attributes, locality
and connectivity.

Differences to Graph2Seq

The Graph2Seq model uses iterations as well in order to identify vertex vectors. A
major difference with our graph attention network is that Graph2Seq does not consider
edge labels in the iterations. Furthermore, the Graph2Seq model does not make use of
an attention mechanism when aggregating the neighborhoods of vertices. There are
other disparities as well, e.g., the specific formulas differ and Graph2Seq maintains two
separate states for each vertex during the iterations instead of a single vector [Xu+18].

6.1.3. Graph Vector

The last step in the graph attention network is to combine the vertex representations in
the graph to a single vector hG ∈ Rngraph after the iterations have finished. As indicated
beforehand, this is done with the following sum:

hG = ∑
v∈V

wv × h(k)v (6.3)

The vectors h(k)v are the outcome of the iterations as explained in Subsection 6.1.2. Not
every node in the graph might be equally important. For instance, the JCModifiers node
in Figure 6.1 might not yield additional information if one tries to capture the semantics
of the code that is represented by that graph. As a result, the sum in Equation 6.3
introduces the weights wv ∈ [0, 1] with ∑v∈V wv = 1. These weights are figured out

2The index inc refers to incorporation.

30

6. Machine Learning Model

by an attention mechanism, more specifically by the attention mechanism proposed
by Bahdanau et al. [BCB14]. Please note that this attention mechanism is deployed
independently of the one which is specified in Subsection 6.1.2 and which is based on
the work of Luong et al. [LPM15]. It differs from the previously used mechanism to
that point that it does not use the scalar product as a basis but a feedforward neural
network. This feedforward neural network tries to align each instance to a reference
vector.

a(r, hinst) = cT × tanh(Wre f × r + Winst × hinst + b) (6.4)

Equation 6.4 describes the feedforward neural network that takes r ∈ Rngraph as the
reference vector and hinst ∈ Rngraph as the hidden representation of the instance. Wre f and
Winst are weight matrices that are trained during the vectorizing model optimization.
The vector c ∈ Rngraph and the bias b ∈ Rngraph are trained as well. The hyperbolic
tangent function serves as the activation function of the network. The purpose of the
vector c is to transform the result of the network to a single scalar.

In our case, the reference vector r is the mean m of all vertex vectors:

m =
1
|V| × ∑

vi∈V
h(k)vi (6.5)

In contrast, the instances hinst are the particular node vectors h(k)v . Each vertex v ∈ V is
then assigned the weight wv ∈ R:

wv =
exp(a(m, h(k)v))

∑vi∈V exp(a(m, h(k)vi))
(6.6)

The weights wv are computed by using the softmax function over the result of the
feedforward neural network – which represents the attention mechanism proposed
by Bahdanau et al. [BCB14]. With wv, the graph attention network can determine the
relevancy of vertices by distinguishing how much the vertices vary in their meaning
from the rest of the graph: the encoder can decide if and to which extent deviating nodes
are less or more important. The weights wv resulting from the attention mechanism
can be again compared to the attention of a human who attempts to understand a
method or class graph: a human would probably focus on a few vertices that seem
most relevant due to their labels or connectivity.

6.2. Decoder

After a formal graph G is transformed to a hidden vector hG as explained in Section 6.1,
the vector hG is used to predict properties or labels of G. The decoder is inspired by

31

6. Machine Learning Model

latent factor models that commonly use matrix factorization in order to align an input
vector space to a different output vector space by introducing latent factors [BKV09].
For our use case, we assume that the encoder of Section 6.1 transformed each graph
G to its latent factors represented by the vector hG. Therefore, we expect that each
dimension in hG specifies the extent of a factor. Even though we do not know the
factors in advance, the vectorizing model will learn them during the training phase.
For the prediction of the graph labels, a linear alignment between the latent factors and
the properties is employed.

The goal of this thesis is the vectorization of source code so that the calculation of
the representation hG is the actual goal since each method or class graph G embeds a
source code element. However, the meaning of this representation is imparted by the
decoder, i.e., by the fact how the decoder transforms the hidden representation to a set
of properties. By processing a vector hG as latent factors, each dimension of the vector
is independent. This eases the interpretation of the hidden vectors: for instance, the
cosine distance between vectors is guaranteed to be an effective similarity measurement
if the vectorizing model computes meaningful distributed representations for the source
code elements.

In order to realize the decoder, we first define the property vocabulary Z = {z0, z1, . . . }
which contains all possible labels that a graph can have. In theory, the size of Z can
be unlimited similarly to the vertex vocabulary X. In practice, the size will be limited
as explained below in Section 6.3. The predicted properties of a graph G will then
be given by the variable propG ∈ P(Z). During the optimization phase of the model,
the correct prediction of propG is enforced by adapting the trainable variables of the
encoder as well as the decoder. For this purpose, the predicted properties propG will be
compared to the ground truth properties in the training set. The optimizer proposed
by Kingma et al. [KB14] is used to adapt the trainable variables if the predicted and the
ground truth properties differ.

In order to compute propG for G, each word zi ∈ Z is assigned a weight kG,i ∈ R:

kG,i = KT
i × hG

The vectors Ki ∈ Rngraph are learnt by the vectorizing model and capture the relevancy
of the latent factors in hG for each label zi. This means that each Ki identifies the
importance of a label zi by computing a linear combination of the latent factors. As a
result, the latent factors – i.e., the dimensions in the graph vector hG – directly impact
the label prediction in a traceable manner so that the meaning of the vector hG emerges.
This is a great advantage over a neural network as decoder which would determine the
properties of a graph G in a non-linear way so that the interpretation of hG can not be
identified easily. The interpretation of hG should be obvious though as the focus of this
thesis relies on hG as mentioned above. Since the computation of hG,i is done for every

32

6. Machine Learning Model

label simultaneously, the computation can be written in matrix notation:

kG = KT × hG

Each vector Ki is then a column in the matrix K ∈ Rngraph×|Z|.
We distinguish two different scenarios in which our machine learning model can

be employed: multilabel and single label classification. The multilabel classification
assumes that elements in Z are not exclusive. Hence, propG can be of arbitrary size.
In contrast, words in Z are exclusive in the single label classification and every graph
has one label: for each graph G, |propG| = 1 holds true. According to this distinction,
the weights kG are processed differently. The following subsections illustrate the
discrepancies.

6.2.1. Single Label Classification

If only a single label has to be predicted for the graphs, the property with the highest
probability will be chosen. The probability P(zi|Z, G) of a label zi ∈ Z for a graph G is
computed with the softmax function over the weights kG,i:

P(zi|Z, G) =
exp(kG,i)

∑zj∈Z exp(kG,j)
(6.7)

The predicted property set is then given by a set with a single label zi which has the
maximum probability.

propG = {argmaxzi∈Z(P(zi|Z, G))} (6.8)

Equation 6.8 finishes the calculation of predicted property set propG by taking the label
zi that maximizes the probability in Equation 6.7.

If the prediction propG differs from the ground truth properties truthG ∈ P(Z) of G
during the optimization of the model, the optimizer of Kingma et al. [KB14] adapts the
trainable variables of the encoder as well as the decoder. Since this optimizer is based
on the computation of gradients, a loss function has to be supplied which specifies to
which extent the prediction deviates from the ground truth. The cross entropy between
the probabilities of Equation 6.7 and the ground truth truthG will be used as the loss
function losssingle for the single label classification:

losssingle(G) = − ∑
zi∈Z

{
log(P(zi|Z, G)) zi ∈ truthG

log(1− P(zi|Z, G)) zi /∈ truthG
(6.9)

This loss function specifies the accumulated difference between the predicted and the
actual probabilities of the labels. The log function in the cross entropy makes sure that

33

6. Machine Learning Model

a higher deviation from the ground truth is heavily penalized. To that effect, the cross
entropy enables a fast convergence of a correct label prediction since the loss will be
minimized by the optimizer as the trainable variables are adapted according to their
gradients.

6.2.2. Multilabel Classification

In multilabel classification, a variable amount of properties can be predicted. Therefore,
the probability of a property zi ∈ Z is independent of the probability of other labels:
it is given by P(zi|G). This is a major difference to Equation 6.7 in the single label
classification. Hence, the probability will not be calculated with the softmax but with
the logistic function:

P(zi|G) =
1

1 + exp(−kG,i)

All labels with a probability greater than a certain confidence con are then added to the
prediction:

propG = {zi|zi ∈ Z ∧ P(zi|G) > con}

In our implementation of the vectorizing model, we take a confidence threshold of
con = 50%. The threshold of 50% could be adapted to higher values as well in order to
ensure an increased certainty of predicted labels.

Similarly to losssingle, we specify a loss function lossmulti for the multiclass classifi-
cation that is used by the optimizer during the training phase in order to adapt the
trainable variables of the vectorizing model:

lossmulti(G) = − ∑
zi∈Z

{
log(P(zi|G)) zi ∈ truthG

log(1− P(zi|G)) zi /∈ truthG

The definition of lossmulti equals Equation 6.9 except that the probability for a property
zi ∈ Z is not given by P(zi|Z, G) but by P(zi|G).

6.3. Hyperparameters

The previous sections elucidated the specifics of the vectorizing model. These specifics
include some hyperparameters that are necessary for the model in order to be operable.
Examples for these parameters are ngraph, nedge and k. In this section, we will introduce
additional hyperparamters that can be set in order to contain overfitting [Haw04].
Additionally, the parameters can have positive effect on the resource consumption and
should be adapted according to the available machine on which the vectorizing model
is trained.

34

6. Machine Learning Model

Label Count Percentage Percentile
get 160 80% 80%
set 30 15% 95%

hello 6 3% 98%
world 4 2% 100%

Table 6.1.: Exemplary distribution of vertex labels for a training set. The labels are
sorted according to their frequency. The percentiles sum up the percentage
of the current label and all labels that are more or equally frequent.

6.3.1. Vocabulary Limitation

The vectorizing model specifics also include many trainable values, e.g., the vocabulary
matrices UX ∈ Rngraph×|X|, UY ∈ Rnedge×|Y| or K ∈ Rngraph×|Z|. The size of the mentioned
matrices depends on the number of attributes in each vocabulary, i.e., for each label
in the vocabulary, the degrees of freedom increase. Normally, the vertex, edge and
property vocabulary respectively are created from all attributes in the training set that
are attached to the nodes, edges and graphs respectively. Our machine learning model
would then try to optimize the embedding of each label even if the label occurs rarely
and should have little to no impact on the resulting properties of the graphs. The
embeddings of rare attributes do not only consume additional resources but might
tamper with the predictions: they might lead to correlations that are purely coincidental
in the training data but are learnt by the model nevertheless. These correlations are
more probable for infrequent labels than for frequent ones. As a result, the model
might apply the correlations to unseen graphs misleadingly which is referred to as
overfitting [Haw04].

In order to contain overfitting due to infrequent attributes, we do not take all
labels in the training set into account for the creation of the vocabularies. Instead we
preprocess the graphs in the training data and only use attributes that account for a
certain percentage of label occurrences. All other attributes are replaced with the label
UNKNOWN. The threshold for the percentage is a hyperparameter that is specified for
each vocabulary separately. The particular parameters are:

• tvertex for the vertex vocabulary X

• tedge for the edge vocabulary Y

• tproperty for the property vocabulary Z

With the vocabulary X as an example, the exact methodology is illustrated in following
enumeration:

35

6. Machine Learning Model

1. Count the occurrences for each label and sort the words according to their
frequency. Table 6.1 illustrates an exemplary distribution of vertex labels.

2. Compute the percentile for the node labels. We define the percentile of a vertex la-
bel as a sum that is computed from the percentage of the label and the percentage
of all other labels that are at least equally frequent.

3. The minimum set of words that accounts for a percentile that is greater than tvertex

builds the vocabulary X.

4. The label UNKNOWN is added to X. Vertex labels that are not part of X are then
replaced with UNKNOWN.

For instance, if we assume tvertex = 0.90 and a training set with the appearances of
Table 6.1, the vertex vocabulary will consist of the labels get, set and UNKNOWN since
get and set build the minimum set that accounts for at least 90% of label occurrences.
hello and world will be replaced with UNKNOWN.

6.3.2. Graph Size Limitation

The resource consumption of the vectorizing model is an important factor since it will
determine which machines are sufficient for executing the model optimization. Hence,
higher consumption can result in longer execution time and higher expenses. The graph
attention network in Section 6.1 inspects every node and its connections so that graphs
with more vertices result in a higher memory consumption. Additionally, it might be
difficult for the network to identify important parts in a huge graph even though the
attention mechanism of Subsection 6.1.3 is employed. To overcome these difficulties,
we limit the size of the input graphs to a fixed number of t#nodes nodes where t#nodes is
a hyperparamter. Before each epoch in the optimization process, graphs that contain
more than t#nodes vertices are then truncated randomly. However, not every node is
equally likely to be cut away, i.e., the truncation process does not work with a uniform
distribution when cutting away vertices. Instead, we decided that nodes with many
connected neighbors are more likely to remain part of the graph. Introducing different
probabilities for the vertices in the truncation process was found to perform better
than a uniform probability distribution. This comes due to the fact that the overall
connectivity of the graphs as they are produced in Chapter 5 should not be jeopardized:
nodes with many neighbors are likely to play an important role in the method and
class graphs because they either build a junction for the structural representation of
the source code or represent declarations that are reused at many spots. As a result,
graphs with more than t#nodes nodes will be reduced in their size but the chances remain
high that they still are close to the source code elements which they represent. The

36

6. Machine Learning Model

probability distribution which specifies the likelihood of a vertex to reside in a graph G
is given by a value pv for each vertex v ∈ V:

pv =
|Fv|+ |Bv|

∑vi∈V |Fvi |+ |Bvi |

Therefore, the likelihood of a vertex v to remain part of the graph for an optimization
epoch is proportional to the count of its outgoing and incoming edges. The limitation of
the graph size to t#nodes nodes saves memory and eases the attention towards important
vertices as long as they are not cut off coincidentally before the respective epoch.

The value of t#nodes should be chosen carefully and definitely rely above the average
number of nodes per graph. Otherwise, most graphs will be truncated during the
training phase which destroys the purpose of the careful graph creation in Chapter 5.
For instance, t#nodes = 200 can be a good value for learning from method graphs
whereas the size of non-truncated class graphs is usually bigger so that the limitation
should be adapted to a higher value, e.g., t#nodes = 1500.

Another preprocessing precaution that saves memory is the limitation of labels per
node and properties per graph respectively. This is done prior to the training phase.
By setting the limits to a high value, the overall performance of the model will not be
impacted.

6.3.3. Trainable Matrices Limitation

The number of matrices that have to be learnt influences the resource consumption in
the same way as the count of their dimensions. There are five weight matrices that occur
in each iteration j ∈ {1, . . . , k} of Subsection 6.1.2: W f or,j, Wbac,j, A f or,j, Abac,j and Winc,j.
Training separate matrices for each iteration not only raises the resource consumption
but also increases the degrees of freedom. Depending on the application area and the
training dataset, this can lead to overfitting. Hence, we introduce the hyperparameters
t#aggr, t#att and t#inc which can be set in order to limit the number of weight matrices
that have to be learnt. The resulting limitations can be expressed with the following
logical statements:

∀j ≥ t#aggr : W f or,t#aggr = W f or,j ∧ Wbac,t#aggr = Wbac,j

∀j ≥ t#att : A f or,t#att = A f or,j ∧ Abac,t#att = Abac,j

∀j ≥ t#inc : Winc,t#inc = Winc,j

Please note that the forward and backward neighborhood variables are restricted
symmetrically. The limitations can be interpreted as follows: since the first iterations
of Subsection 6.1.2 mainly aggregate information of the close neighborhood, these

37

6. Machine Learning Model

iterations are not affected by the restriction. However, later iterations do not make use
of distinctive weights as the vertex vectors should already be converged to a certain
degree. As a result, information that comes from further neighbors in later iterations is
incorporated less adapted. Therefore, the three limiting hyperparameters should not
influence the overall ML performance but reduce the resource consumption during the
model optimization.

38

7. Implementation

The approach for vectorizing software as it is proposed in this thesis is implemented
by two different sub-programs. The first of them deals with the transformation of
Java code bases to graphs. Therefore, it implements the concept of Chapter 5. The
second program handles the machine learning process that encodes the graphs to
vectors as highlighted in Chapter 6. The design decisions for both sub-programs,
their configuration options and the particular outcome are discussed in the following
sections.

7.1. Graph Creation Program

The first sub-program creates the graphs according to Chapter 5. Therefore, it has
to parse Java code bases which it then transforms to method and class graphs. The
methods and classes are filtered beforehand according to Section 4.2. The parsing
library decision and the program structure are explained below.

7.1.1. Parsing Library

For the parsing of code bases, there exist several Java code parsers that capture source
code as an AST and could be suitable as basis for the graph creation. An example
of such a library is JavaParser.1 A major disadvantage of JavaParser is that it is only
designed to parse but not to compile Java code. As a result, its symbol resolving
is immature. Since the resolving of symbols is necessary for specifying the reuse of
declarations and hence for creating the method and class graphs, JavaParser will not be
utilized in this work.

A mature compiler for Java is the one that is included in the OpenJDK which itself is
implemented in Java. Up until version 8, the OpenJDK exposes compiler internals which
include not only the AST but also the symbols of syntax tree elements. These exposed
classes of the JDK implementation allow an easy and reliable creation of method
and class graphs. As a result, our program for the graph creation uses OpenJDK 8
as dependency.2 This means that versions beyond Java 8 are not supported by our

1http://javaparser.org/
2http://openjdk.java.net/projects/jdk8/

39

http://javaparser.org/
http://openjdk.java.net/projects/jdk8/

7. Implementation

Figure 7.1.: The figure illustrates the most relevant classes and their dependencies in
the graph creation program. Packages are illustrated with dotted rectangles
whereas all other rectangles represent a class. The dashed arrows indicate
inheritance. All other arrows indicate that a method from the destination
class is directly called in the source class.

program since OpenJDK 9 and later versions of OpenJDK do not allow access to the
internals anymore. Because this thesis builds a proof of concept, the support for the
latest Java versions is not necessary at this stage and can be added in future work.
Please note that the Java code bases have to be compilable in order to be eligible for the
parsing. Otherwise, OpenJDK might not be able to construct the AST.

7.1.2. Structure

The software for the graph creation is written in Java like the OpenJDK. The overall
structure of the this software is illustrated in Figure 7.1. Please note that only the most
relevant classes and packages are highlighted in this figure in order to preserve a clear
view. The program can be called via CmdLineTool with a configuration file which is
given in JSON format. Alternatively, command line options can be passed to ConfigTool
with the same effect. The following inputs have to be provided:

• At least one code base: the code bases are given in form of directories. The
program will traverse the directories in order to find files ending with .java. These
files will be parsed with OpenJDK 8 for the method and class graph creation.

40

7. Implementation

• Output directory: the resulting graphs will be stored in this directory at the end
of the execution. Each graph is saved in separate JSON file as this format is
flexible and allows a simple data exchange across programming languages.

• Classpath: the dependencies of the code bases have to be given in form of a
classpath. If the classpath is not provided, the JDK might not be able to discover
and resolve all symbols correctly. In case of missing dependencies, the program
will terminate depending on the severity of the dependency absence.

• Additional input options specify whether method graphs, class graphs or both
should be produced. If class graphs should be outputted, a further option
distinguishes the truncated or non-truncated graph generation.

There are other options as well. As they have little impact and are too detailed, they
are not listed here.

The general process of the graph creation is then managed by SourceCodeParser
according to the input options. It thereby delegates the execution to the responsible
classes:

1. The code bases will be parsed by JavaSourceGraphBuilder first. It also filters the
methods and classes according to Section 4.2. It then passes the corresponding
subtrees of the AST to MethodGraph and ClassGraph respectively – depending on
whether method graphs, class graphs or both have to be generated. MethodGraph
and ClassGraph implement the methodology of Chapter 5 and store a single
method or class respectively. Both classes inherit from ASTGraph which in return
depends on JGraphT.3 JGraphT is a Java library for graphs.

2. After the graphs have been created and are stored internally in the program,
they have to be transformed to JSON files. This is done by GraphSerializer. The
serialization is realized with help of the Jackson project.4

7.2. Vectorizing Model Program

The second sub-program implements the vectorizing model which is explained in
Chapter 6. The implementation uses Python 3 in combination with Tensorflow as basis.5

Tensorflow allows the implementation of neural networks as dataflow graphs [Aba+16]
and enjoys great popularity in the field of deep learning. The following subsection will
highlight the overall structure of the program and its execution modes.

3https://jgrapht.org/
4https://github.com/FasterXML/jackson
5https://www.tensorflow.org/

41

https://jgrapht.org/
https://github.com/FasterXML/jackson
https://www.tensorflow.org/

7. Implementation

Figure 7.2.: Each Python source file is illustrated as a separate rectangle. The arrows
indicate whether contents of a file are imported in another file.

7.2.1. Structure

Figure 7.2 illustrates the most important source files in the program and their intercon-
nections. Please note that two files were omitted due to their negligible impact. The
following list explains the source files and their responsibilities.

• main.py: this file is the entry point for the program. It adjusts the control and data
flow. According to the chosen execution mode, a different control flow within
main.py is executed. The different modes are explained in Subsection 7.2.2.

• configuration.py: the input options are stored in this file. Each hyperparameter
of Chapter 6 has to be assigned here. The execution mode is also selected in
configuration.py. Additional input options include the directories that contain the
location of the graphs which have to be processed. Most of the additional input
options depend on the execution mode.

• vocabulary.py: this file contains amongst others the class which represents the
vertex, edge or property vocabulary.

• data.py: the graphs are parsed and preprocessed in classes of this file. This means
that several hyperparameters of Section 6.3 are realized here. This also includes
the vocabulary creation.

• vectorizing.py: it contains only a single class which represents the encoder that
was introduced in Section 6.1. This class defines all variables and calculations of
the encoder. It is only instantiated once during the program execution.

• decoder.py: the decoder that is explained in Section 6.2 is maintained here. The file
contains two classes: one for the single label classification and another one for the
multilabel classification. Similarly to the class for the encoder, either of the two
classes is instantiated only once.

42

7. Implementation

7.2.2. Execution Modes

In configuration.py of the model implementation, all hyperparameters explained in
Chapter 6 have to be specified. The model distinguishes three major execution modes:
training, predicting and vector export. Each of these modes has further, individual
parameters.

Training Mode

In training mode, the model implementation expects a training dataset as input. The
dataset contains graph JSON files that are created with the program of Section 7.1.
However, the JSON files have to be extended with the properties towards which the
vectorizing model should be optimized. According to the attached properties in the
JSON files, the configuration has to specify whether the decoder for single label or
multilabel classification has to be used. Afterwards, the program optimizes all trainable
values of the vectorizing model in several consecutive epochs by using the Adam
algorithm [KB14] so that correlations between the graphs and their attached properties
are captured. After each epoch, a checkpoint is created which contains the trained
values. In addition to the training dataset, a validation dataset can be specified. It also
contains graphs that have properties attached to them. If a validation set is specified,
metrics about the prediction performance on the validation set will be printed after
epoch: for each model checkpoint, the prediction of properties can be evaluated for
graphs which the vectorizing model did not learn on. Hence, the generality of the
specific checkpoint is tested with the validation set.

Predicting Mode

In the predicting mode, the python program expects a set of graph JSON files as they
are produced by the graph creation implementation. According to a given checkpoint,
the program predicts the attributes for the graphs by employing the encoder and the
decoder together. The particular decoder has to be specified corresponding to the type
of classification: single label or multilabel. Even though the prediction of attributes
for method or class graphs is not the focus of this thesis, this mode can be used to
determine how a trained model performs when applied to unseen graphs – similar to
the validation set during the training mode. Hence, this mode is mainly helpful for
validation purposes.

43

7. Implementation

Vector Export Mode

This mode is employed for the vectorization of graphs after the vectorizing model
has been trained. The trained model is handed over as a checkpoint. The model
implementation employs the optimized encoder in order to transform user-defined
graphs to vectors. These graphs are again delivered in form of JSON files. The resulting
vectors are stored in a single JSON file that can then be used as input for other machine
learning algorithms like outlier analyses or clustering.

44

8. Application on Method Level

The hypothesis of this thesis is that a neural network is able to locate the correlations
between source code and its hidden properties for a set of given Java projects. As a
result, the neural network would be able to encode these properties for any code base
according to the identified correlations. In order to evaluate the quality of the approach,
this chapter presents an experiment with the vectorizing model on method level and
discusses the outcome.

8.1. Experiment – Semantic Vectorization

The goal of the experiment is to create vectors that describe the semantics and therefore
the meaning of Java methods. Since the vectorizing model is a supervised ML algorithm,
a training dataset with predefined labels has to be specified. The quality of the
learnt vectors will then be measured by evaluating whether the vectorizing model
is able to predict the labels of methods which were not part of the training dataset.
Subsection 8.1.1 will therefor explain the decisions for the label creation. Afterwards,
the experiment and its outcome are explained in detail.

8.1.1. Label Creation

In order to use our vectorizing model, one has to specify a training dataset first. This
means that a set of methods has to be gathered where descriptive properties are
attached to each method. These properties build the ground truth and the model will
try to infer correlations between them and the respective method. For semantic vectors,
these properties would have to characterize the meaning of the method.

The most labor-intensive way to create the characteristics would be to manually
assign properties in natural language. The manual labeling approach will result in
a small dataset though which in return might lead to a trained model that does not
generalize well: the model can only make inferences that exist in the training data. It is
improbable that a small dataset contains enough variety or a concise discrimination of
method semantics. As a result, a model based on few training examples will not reach
a sufficient capability for capturing the meaning of diverse methods that occur during
software health checks: the practicality of the resulting ML model is questionable.

45

8. Application on Method Level

Alternatives for the manual property assignment are the automated label generation
or the utilization of existing properties. To the best of our knowledge, there are no
ready-to-use tools for the automated label generation of source code so that we will
neglect this possibility: creating an own tool set involves a heavy exploration and
comparison of technologies and exceeds the scope of this thesis.

Therefore, the question about existing properties remains. A solution might be the
utilization of online forums: StackOverflow1 is a website where programming related
questions are posted in natural language and answers or questions can contain source
code. Previous work about machine learning on source code – e.g., by Allamanis
et al. [All+15] – uses data from this website in order to retrieve NL sequences that
correlate to source code snippets. Since the code in the questions or their answers are
normally well explained by the NL phrases, the data from StackOverflow could build
a reliable basis. However, the included code is usually simplified in order to make it
better understandable for the audiences. To that effect, a resulting training set does
not represent source code of real world software projects as they occur during health
checks: the trained model does not generalize well yet again.

Another source for method attributes are the method names: regardless of the
method’s nature, it always has a name. Hence, it can always be extracted. Additionally,
there exist methodologies for the meticulous nomenclature as suggested by Deißenböck
et al. [DP05]: they propose a methodology of concise and consistent naming by intro-
ducing so called concepts: ”a concept is a unit with an associated meaning in terms of
properties or behavior”[DP05]. With this approach in mind, the method names within
a certain scope – e.g., a project – describe the semantics consistently and precisely.

Admittedly, there are some pitfalls with the identifier naming. Obviously, the naming
depends on the experience and carefulness of the programmer, i.e., lack of care can
result in suboptimal method nomenclature. As a consequence, the names would not be
a proper source for identifying the semantics of source code. Furthermore, even if the
approach of Deißenböck et al. [DP05] is followed, the naming might only be consistent
within a certain scope so that the consistency does not necessarily translate across scopes
or projects. However, this effect can occur for any properties built by humans. As a re-
sult, method naming will be our best chance of creating a training dataset that captures
the semantics and is reliable, general and of sufficient size at the same time. The down-
sides of this labeling have to be kept in mind when investigating the machine learning
performance. Related work which also applies machine learning on source code uses
the method naming as evaluation basis, too [APS16][Alo+18a][Alo+18b][ALY18].

1https://stackoverflow.com/

46

https://stackoverflow.com/

8. Application on Method Level

JCMethodDecl

set and get property

 NAME

...

 PARENT

...

 PARENT

...

 PARENT

JCBlock

 PARENT

JCExpressionStatement

 PARENT JCReturn

 NEXT

...

 PARENT

 PARENT

...

 PARENT

Figure 8.1.: The figure shows the graph of Figure 5.3 with omitted subgraphs. For the
evaluation on method names, the vertex highlighted in blue will be cut off.

8.1.2. Setup

The ability of learning semantic properties will be tested in this experiment. The
properties will be the method names for the aforementioned reasons. Even though
the predicting of properties is not the intended purpose of the vectorizing model, the
experiment will allow an assessment whether the model is able to draw correlations
between methods and their properties: if it was not able predict the properties, it would
be improbable that it is able to correlate the inputs and their attributes. As a result,
the computed vectors would not store meaningful information. This subsection will
highlight the specifics of the experiment.

Procedure

The methodology of vectorizing methods is illustrated in Section 4.6. For the experiment
of predicting method names, the methodology explained in Section 4.6 is adapted and
results in the following procedure:

1. A training, validation and test dataset have to be identified first. The three sets
have to be distinct. The training dataset will be used for the actual optimization
of the vectorizing model whereas the validation dataset will be used in order to
determine which combination of hyperparameters and amount of training epochs
yields the best model. In contrast, the test set serves as basis for the evaluation of
the model performance.

47

8. Application on Method Level

2. Each method in the three datasets has to be assigned properties. In this experi-
ment, the method names serve as properties. Thereby, the method name of each
method is split into tokens according to snake case and camel case. The resulting
tokens are transformed to lower case and build the properties of the respective
method. Since the tokens in a method name are not exclusive, the decoder for
multilabel classification will be used later. Due to the nature of this decoder, mul-
tiple occurrences of the same token in a method name are ignored. Additionally,
the order of the tokens as it is given by the method name is neglected: we assume
that the existence of a property is more relevant than the context in which it
occurs.

3. The methods in the datasets will be transformed to graphs. As illustrated in
Chapter 5, method graphs have the method name attached to them. Since this
might prevent the model from learning the names from the hole graph, we remove
the method name from the graphs. As highlighted in Figure 8.1, the node that
contains the method name is cut off. Apart from that, the method graph creation
is not altered.

4. The vectorizing model will be optimized on the training dataset next. This means
that the encoder and the decoder are trained as a unity as proposed in Section 6.
The outcome of this step is the model that performs best on the validation dataset.

5. The trained model will be evaluated. In contrast to the intended motivation,
the trained encoder and decoder are employed as unity in order to predict the
method names of the test set. After defining metrics, the predicted and actual
names of methods in the test set are compared so that a quantitative evaluation
results.

Datasets

As mentioned above, a training, validation and test set have to be gathered. For this
purpose, we parsed common, open-source Java projects and libraries from Github2 and
the Apache Software Foundation (ASF) Git repository3. Altogether, eleven projects were
parsed which resulted in a total of 212,392 method graphs. Table 8.1 depicts additional
information about the datasets. Please note that the projects were not necessarily parsed
completely. The reason for only partly inspecting projects was the effort of resolving
dependencies: the graph creation implementation needs the classpath for a project as
input as mentioned in Chapter 7.

2https://github.com/
3http://git-wip-us.apache.org/

48

https://github.com/
http://git-wip-us.apache.org/

8. Application on Method Level

Dataset Project Name #Methods Git Repository Hash of Commit

Training 161,372
Elasticsearch 22,819 Github 485915bbe780949a03a1bff0dcde6a81a39de3bb
Guava 9,720 Github 3dfee64294921a4d8ec634961991210f6b188e88
Hadoop-Common 49,042 Github 3f80dbb358190b07f04a0dbf27e049b404bb9303
Hibernate-ORM 27,511 Github 9ff14a33c78b11f03351748dfe4a5610517325f3
Maven 1,862 Github e4e33f73b8f089e443a3bcc678f509bf0daffb15
Presto 31,820 Github 65edf4963f50798ff9d449f76caa6cbd6e69ed45
Wildfly 18,598 Github 57204824f93939793c9efc05d8b3d0b131699a9c

Validation 19,332
Cassandra 19,332 ASF 4dd7faa75210f635af36c0852e9b0d2e8bdbb95c

Test 31,688
Spring-Boot 8,812 Github 38f112b9e1d1d0e0802bb66f802037959551ed6a
Spring-Security 4,934 Github 566bc6a6e1064422dd9582abded2481de76f6833
Tomcat 17,942 Github ffc4b76e42fd39d88c9417d0ba2b3d697c16f5b5

Table 8.1.: The table enumerates information about the respective datasets. The collected
Java projects stem from similar application areas in order to allow a fair
evaluation.

Metrics

For the quantitative evaluation in Step 5 of the above procedure, metrics have to be
defined. Thus, we will use the same metrics as proposed by Ulon et al. [ALY18]. As
a result, precision, recall and F1 scores will be measured for the test dataset. These
metrics are based on the count of true positives, false positives and false negatives. For each
of the three, a respective counter will be used. The counters are updated be comparing
the prediction and the ground truth for each method name. This is done on a token
basis:

• If a token that is contained in the method name is not predicted for that method,
the false negative counter is incremented.

• If a token that is not contained in the method name is predicted for the method,
the false positive counter is incremented.

• If a token is correctly predicted for a method name, the true positive counter is
incremented.

According to the three counters, precision, recall and F1 are then calculated. Please note
that even if a predicted method name is only partly correct the metrics can improve.

49

8. Application on Method Level

Configuration and Baseline Models

For the prediction with the vectorizing model, the hyperparameters in Appendix C
performed best. With these parameters, the vectorizing model was optimized on the
training dataset of Table 8.1 for 40 epochs. Later epochs did not show any performance
gain on the validation set. The checkpoint that performed best on the validation dataset
within the 40 epochs was chosen as final model for the property prediction.

In order to put the scores of our model into context, we will compare it with other
machine learning models. We chose the zero rule classifier as trivial baseline. This
classifier will always predict the same property for any method in the test set. This
property is the most frequent token of the training set. For our training set of Table 8.1,
the token get occurs most often.

A more sophisticated ML model is the convolutional attention network proposed
by Allamanis et al. [APS16] which is specialized on the prediction of sequences for
source code snippets, i.e., it predicts an ordered set of properties for source code.
Since the aforementioned metrics do not take the order of predictions into account, it
will be ignored during the assessment of the scores: the predicted sequences of the
neural network are interpreted as a set for our evaluation. This neural network by
Allamanis et al. analyzes the code snippets by interpreting source code as a sequence
of words like natural language, i.e., Allamanis et al. do not transform software to
structured objects before the machine learning algorithm is applied. As the name
suggests, the convolutional attention network is based on a convolutional neural
network (CNN). It also uses a gated recurrent unit (GRU) which is a variant of an
RNN for the sequence prediction [Chu+14]. An attention mechanism is employed as
well. Since the convolutional attention network offers several hyperparameters, we
went for the configuration that is suggested in the paper by Allamanis et al. [APS16].
The network retrieved the same training and validation set like our model for the
optimization phase. Additionally, it was trained for 100 epochs: no performance
gain was apparent for later epochs. Corresponding to our model, the checkpoint that
performed best on the validation set was chosen as second baseline model.

8.1.3. Results

After training the two baseline models and our vectorizing model, the scores as shown
in Table 8.2 result. Surprisingly, the zero rule classifier achieved a precision of over 30%.
Since this classifier always predicts the token get, nearly a third of the test set methods
are getters or methods that include get. Due to the low recall, the F1 score of the zero
rule classifier settles down at less than 17%. As expected, this trivial classifier was
clearly outperformed by both our vectorizing model and the convolutional attention

50

8. Application on Method Level

Model F1 Precision Recall
Zero Rule Classifier 0.168 0.301 0.116
Vectorizing Model 0.505 0.582 0.445
Convolutional Attention Network 0.520 0.678 0.422

Table 8.2.: The table highlights the prediction scores for the dataset of Table 8.1.

network by Allamanis et al. [APS16].
The convolutional attention network outperformed not only the zero rule classifier

but also our vectorizing model by a gain of more than one percentage point with respect
to the F1 score: the precision of the convolutional attention network exceeded the score
of our model whereas the vectorizing achieved the better recall. For both models the
precision is significantly higher than the recall. This means that many of the predicted
tokens were actually part of the method name.

8.1.4. Interpretation

Even though the vectorizing model and the convolutional attention network outper-
formed the zero rule classifier by far, the F1 scores are still not close to a perfect
prediction and have values slightly above 50%. This comes due to the fact that for the
method name prediction one has to choose the correct words from a large vocabulary
which can theoretically be of infinite size. Additionally, method names can not always
be concluded from their method body either because of inconsistent naming or because
of lacking the context of the method.

The reasons for the fact that the convolutional attention network performed better
than the vectorizing model might lie in the combination of this specific task and
the differing approaches of the models. As highlighted by Deißenböck et al. [DP05],
identifiers account for a high percentage of tokens in source code. Deißenböck et al.
also introduce concepts as mentioned in Subsection 8.1.1. By assuming a concise and
consistent identifier naming, similar concepts should be reflected by the method name
and the identifier names that occur within the respective method. As a result, the
method name prediction can be eased by not only inspecting the source code structure
and the cross-referencing of declarations but by simply aggregating the concepts which
are represented by the identifier names.

The convolutional attention network does not employ a transformation of source
code elements before the CNN is applied [APS16]. Hence, the high percentage of
identifier tokens is represented in the model input as well. In contrast, the graph
creation in Chapter 5 for the vectorizing model causes that the ratio of identifier tokens
is not reproduced anymore: each identifier name only occurs once in the final graph

51

8. Application on Method Level

– no matter how many times the identifier appears in the method body. For large
methods, the names might even be coincidentally cut away as explained in Section 6.3.
Consequently, our vectorizing model can not take advantage of obvious correlations
between method and identifier names: it mainly relies on the source code structure and
the data usage.

Another reason for the better performance of the convolutional attention network
might be that this neural network is specialized for sequence prediction. This means
that for each token which is predicted for a method a new vector is computed. As
a result, a predicted token results from individually analyzing the method body. In
contrast, our model attempts to predict all tokens of a method name from a single
vector due to the original motivation. As a result, all relevant information in a method
has to be aggregated in this unique vector. Hence, the usage of individual vectors is
at an advantage since relevant parts of a method can be aligned gently for each label
so that a clear distinction between source code parts and their corresponding label is
possible.

8.2. Discussion

The purpose of the previous experiment is to assess whether our approach is able to
capture latent information on method level in order to predict semantic properties.
The prediction of properties is of course not the intended goal of our methodology.
On a higher level of abstraction, it allows conclusions though about the quality of
the computed vectors that are the result of the encoder. With a satisfying F1 score of
50.5%, the vectorizing model is able to embed lots of relevant information. This score is
achieved even though the specific experiment does not favor the vectorizing model but
rather the convolutional attention network as explained in Subsection 8.1.4. Thus, our
approach can be assumed to smartly embed the method structure and data usage in
order to predict semantic properties. Therefore, the method level allows the embedding
of semantic characteristics which provides an answer to RQ3 in Chapter 3. Although
the experiment demonstrated abilities of the vectorizing model, the practicality of this
experiment will be discussed in the following subsections. Hence, the applicability for
our motivation and exemplary usages will be explained.

8.2.1. Practicality of the Experiment

The motivation of our work is based on health checks at itestra GmbH. Thereby, IT
consultants are faced with an unknown code base which they have to review. Applying
the model of the above experiment, names could be suggested for methods in the
respective code base. This does not directly yield additional assistance since the

52

8. Application on Method Level

method names are already given in the source code that is subject to a health check.
Furthermore, the score of predicting the nomenclature in the experiment is not sufficient
enough in order to evaluate whether the actual names in the software are concise: the
predicted method names themselves are not always precise so that comparing the
predictions with the actual names does not yield additional assistance either. Even if
strong deviations of the prediction from the actual name might indicate a potential
misnaming, the above experiment is hardly applicable during health checks.

8.2.2. Usage Example

The experiment did however show that our model is able to gently capture relevant in-
formation as it clearly outperformed the trivial baseline model. Keeping the ubiquitous
presence of method names in a health check in mind, this fact can be utilized. A benefit
for analyzing unknown projects can be achieved by using the model with its intended
purpose: the vectorizing of code elements. Assigning methods to semantic categories
builds a great assistance: it provides a rough idea about which parts accomplish similar
tasks and therefore about the modularity of the project. For instance, if we assume
a project in an object oriented programming language for which no clear emergence
of semantic clusters can be observed, it might be a sign that the structuring of the
project shows poor quality: no functional decomposition is given so that unnecessary
complexity might be inflicted to the code base [ST04]. This subsection illustrates the
semantic vectorization by means of an example Java project: the Guava library. It is
part of the dataset in Table 8.1 and offers implementations of commonly used datatypes
and other utils.4 Since this library contains datatypes like collections and graphs, its
methods offer diverse functionalities so that the semantic vectors which are created
with the help of the method names yield an interesting insight in the project. Thus, this
subsection provides an exemplary automated software analysis that demonstrates the
applicability on the method level. An answer for RQ2 in Chapter 3 will therefore be
provided.

Setup

For the experiment in Section 8.1, three distinct datasets were employed: the training,
validation and test set. This is due to the fact that the experiment of Section 8.1 was
conducted in order to demonstrate that the vectorizing model is able to generalize
and predict properties for methods that it was not trained on. For the discussion
in this subsection, the method vectors and not the predicted names are relevant
however. Therefore, the distinction of separate datasets is not necessary. To this effect,

4https://github.com/google/guava

53

https://github.com/google/guava

8. Application on Method Level

Figure 8.2.: Each point in the figure represents a method of the Guava library. The
position of the points is determined by t-SNE which was applied on the
method vectors. The orange rectangle highlights some of many point
accumulations. Please note that the axes and their scales are figured out by
t-SNE and have no deeper meaning.

the vectorizing model will be trained on the method names of the Guava library.
Afterwards, the trained model will be used in order to vectorize the methods it was
trained on. This approach can also be applied for projects that are subject to a health
check since the method names are always available for their methods.

For the usage example, the vectorizing model was trained for 100 epochs on the
method graphs of the Guava library with the hyperparameter settings which were
used in Subsection 8.1.2 and are listed in Appendix C. The 100 epochs of training were
chosen as no improvement was apparent in later epochs. By means of the metrics
explained in Subsection 8.1.2, the model checkpoint that reached the highest F1 score
for the name prediction in Guava is selected for the following analyses.

54

8. Application on Method Level

Visualization

After the vectorizing model was optimized, the produced method vectors have to
be investigated and processed. A first step is to visualize them. However, their
dimensionality is given by the hyperparameter ngraph which is set to 96 as specified in
Appendix C. In order to visualize a dataset of vectors with high dimensionality, the
T-distributed Stochastic Neighborhood Embedding (t-SNE) can be used. By attempting
to preserve the locality of the datapoints, t-SNE reduces their dimensionality in a
non-linear way [MH08]. In our case, this means that the vectors are mapped to points
in two-dimensional space. Since the locality is likely to be preserved by t-SNE, vectors
that are similar according to the cosine similarity are mapped to points that maintain a
close distance in the euclidean space, i.e., their points are visualized close to each other.

With the help of the t-SNE implementation in the scikit-learn library [Ped+11], the
visualization in Figure 8.2 emerges. Each point in the figure represents a method vector
and therefore a method. Most of the plotted points can not be related to obvious
clusters even though denser areas are visible. This is especially the case in the mid of
the plot. On the borders of the plot, clear accumulations of points or clusters can be
observed however. This means that each method in such an accumulation is encoded to
a similar vector. Since the method vectors are created to optimally compute their names,
methods in an accumulation should have the same or a similar name. For instance, this
is demonstrated by the set of clusters which resides in the right part of Figure 8.2 and
is surrounded by an orange rectangle: most of the methods in this accumulation have
the name toString.

These clusters are first of all a sign for a consistent nomenclature: the model is
able to assign methods to clusters by correlating the method bodies and names. On a
higher level of abstraction, the accumulations also illustrate semantic aspects as similar
method names should refer to similar semantics. Consequently, it can be assumed
that a functional decomposition is given for the Guava library since accumulations are
obvious in Figure 8.2.

The visualization of the semantic vectors is applicable during health checks and
gives a first impression about the consistency of the nomenclature and the functional
decomposition.

Similarity Search

Since the method graphs of Chapter 5 mainly embed the structure and the data usage
of a method, the machine learning model of Chapter 6 stores exactly this information
in the method vectors in a smart manner so that the method names can be predicted.
To that effect, the method vectors are likely to embed the structure of a method but

55

8. Application on Method Level

correlate to the method name at the same time. Assuming a complex method, the
identification of the correlation with the method name might be hindered but the
structure should still be embedded in the resulting vector.

The aforementioned visualization highlighted that several accumulations of method
vectors emerge for the inspected project. Since the plot in Figure 8.2 is based on
t-SNE with the cosine similarity, the visualization illustrates furthermore that the cosine
similarity between the method vectors indeed has a meaning. Keeping in mind that the
structure is represented to a certain extent by the method vectors, the cosine similarity
between method vectors can be used to find similarly structured methods even if the
names were not aligned correctly for these methods. Thus, the computed vectors can
be processed with nearest neighbor algorithms.

During a software health check, this feature might be of additional assistance: having
identified a complex method that lacks comprehensibility, similar methods in the code
base can be found with the computed vectors. Appendix D gives an example for the
Guava library.

56

9. Application on Class Level

The application on method level in Chapter 8 introduced an experiment that demon-
strated the quality of our approach and discussed the applicability of the results for
health checks. Similarly, the class level will be evaluated in this chapter: an experi-
ment will be presented in Section 9.1 whereas the results and their practicality will be
discussed in Section 9.2.

9.1. Experiment – Maintainability Forecasting

Our original motivation arises from software health checks at itestra GmbH. A ma-
jor goal during these checks is to ”reveal cost drivers” for a software system.1 As
highlighted by Boehm et al. [BP88], the software productivity and therefore the costs
can be indeed impacted by the software quality which the maintainability is part of.
Consequently, this experiment attempts to capture the maintainability for Java classes
with the vectorizing model.

9.1.1. Label Creation

Since the vectorizing model is employed in a supervised ML setting, a training dataset
has to be supplied for the experiment. Hence, labels which describe the maintainability
have to be attached to the Java classes that are part of the training set. However,
the estimation of the maintainability is normally subject to personal impression and
experience of programmers. In order to capture the judgment of professionals, we
adopt the labeling proposed by Schnappinger et al. [Sch+19]. Schnappinger et al.
introduce three separate labels for their maintainability forecasting which is based on
the result of static analysis tools. The following listing enumerates verbatim the labels
as they are defined for classes [Sch+19]:

• Label A indicates the absence of indicators for maintainability problems with
respect to the ease of change.

• Label B covers classes with some room for improvement.

1https://itestra.com/en/leistungen/software-healthcheck/

57

https://itestra.com/en/leistungen/software-healthcheck/

9. Application on Class Level

• Label C is assigned to code that is clearly hard to maintain and requires high effort
to be changed.

With their descriptions in mind, the labels have then to be manually assigned to the Java
classes by inspecting the source code. Schnappinger et al. realize the assignment with
the help of experts so that the labeling is representative for code reviews of industrial
software projects. A rule-based assigning of the labels is inadvisable since the ML
model might not learn the expert opinion but the rules [Sch+19]. Even though the
manual assignment of these labels above might still be subject to personal opinions,
they offer a reliable frame for the manual label creation.

9.1.2. Setup

With the above labeling, this experiment evaluates whether the vectorizing model is
able to predict the labels for classes it was not trained on. Yet again, not the vectorizing
but the predicting of characteristics will be measured. Since the predictions are made
from the vectors, their quality is still crucial in order to perform well in the experiment.
Therefore, the meaningful vectorization will be tested indirectly.

Procedure

The procedure for conducting the experiment can be summarized as follows:

1. A training, validation and test dataset of Java classes have to be gathered. As
usual, the training set is used for the optimization phase whereas the validation
set helps to identify the optimal hyperparameter setting and number of training
epochs. The test set serves as basis for a quantitative evaluation.

2. After the datasets were identified, each class in the datasets has to be labeled. As
explained above, the labels will be created by manual code inspection. Afterwards,
each class is assigned to a category: A, B or C. Since each class has exactly one
label, the decoder for single label classification is employed in the vectorizing
model.

3. The classes are transformed to graphs next. Since the method level is not investi-
gated in a separate model and the methods of classes might play an important
role for determining the class maintainability, the Java classes will be transformed
to non-truncated graphs. Their creation is explained in Chapter 5.

4. The variables of the vectorizing model will be optimized. This means that the
encoder and decoder are trained as a unity on the training dataset as usual. The

58

9. Application on Class Level

#A #B #C Total

Training Set 65 14 14 93
Validation Set 39 8 9 56
Test Set 26 5 5 36

Total 130 27 28 185

Table 9.1.: The table lists the amount of labels in each dataset. The classes were split
50-30-20 into training, validation and test set. The percentage of labels is
preserved in each dataset.

Figure 9.1.: The distribution of the labels A, B and C in the parsed classes. This
distribution is preserved in the particular datasets. The datasets are shown
in Table 9.1.

model checkpoint that performs best on the validation set serves as basis for the
next step.

5. The encoder and decoder of the best model checkpoint are employed together in
order to predict the maintainability for the classes in the test set. By inspecting
the discrepancy between the predictions and the actual labels, a quantitative
assessment results.

Datasets

For the datasets, several classes of JUnit 42 and a full stack insurance software were
investigated and categorized according to their maintainability. These two projects cor-
respond to two of the three projects that were analyzed by Schnappinger et al. [Sch+19].
Schnappinger et al. also provided the labeling of the extracted classes for our evaluation.

2https://github.com/junit-team/junit4

59

https://github.com/junit-team/junit4

9. Application on Class Level

Predictions A Predictions B Predictions C Total

Ground Truth A 26 0 0 26
Ground Truth B 3 0 2 5
Ground Truth C 2 0 3 5

Total 31 0 5 36

Table 9.2.: The table shows the distribution of predictions with absolute numbers for
the test set of Table 9.1. It highlights which labels were predicted for each
category.

Since their labeling emerged with professional assistance, the labels can be assumed
to be precise and consistent. Due to their manual investigation, only 185 examples
result. However, the chosen classes sum up to 51k lines of code [Sch+19]. As Table 9.1
illustrates, these examples are randomly split into a training (50%), validation (30%) and
test set (20%). The distribution of the labels is visualized in Figure 9.1. It is preserved
in each dataset in order to allow a fair evaluation.

Configuration

With the help of the validation set, the hyperparameters as listed in Appendix E were
found to perform best. Using these parameters, the model checkpoint that had the best
outcome for the validation set within 50 epochs of training was chosen as the result of
Step 4 in the above enumeration. The training was stopped after 50 epochs since no
performance improvements occurred in later epochs.

9.1.3. Results

The best model checkpoint predicted the degree of maintainability correctly for over
80% of the samples: more specifically, 29 out of 36 test samples in Table 9.1 were
properly forecasted. Table 9.2 depicts the results on the test set in detail. It illustrates
that the vectorizing model did not once predict the category B but only predicts A or C.
On the other hand, it predicted all samples with label A properly.

9.2. Discussion

Due to the tiny test dataset and the inhomogeneous label distribution, the high percent-
age of correct predictions in the experiment is not significant. The detailed listing in

60

9. Application on Class Level

Table 9.2 provides however detailed information about the experiment and its practi-
cality. Informally expressed, the table reveals that the model is able to identify source
code of good maintainability whereas bad classes are only partly detected.

Since classes with maintainability flaws were detected, the vectorizing model can be
indeed integrated in the health check. Even though it is not guaranteed that all bad
classes will be detected, it can be assumed that only classes with flaws will be labeled
with category C. This means that there might be false negatives with respect to the
prediction of C whereas the chance of false positives is low: in the experiment, the label
C was never assigned to a Java class for which ”indicators for maintainability problems
with respect to the ease of change” [Sch+19] are absent.

In order to investigate the applicability of the vectorizing model, we applied the
trained model of the experiment explained in Section 9.1 to parts of the JSweet project.3

JSweet is an open-source transpiler that converts Java to TypeScript or JavaScript.4 In
total, 97 classes were parsed. Of the 97 classes, the model of Subsection 9.1.3 labeled
none as B and 18 classes as C. For a proper assessment, we inspected the classes that
were categorized as C: according to our own intuition, we manually assigned the labels
by keeping their definition by Schnappinger et al. [Sch+19] in mind. Our manual
categorizing for these 18 classes produced the following result:

• Eight of the classes were correctly predicted to be part of the category C. Their
size or complex methods indeed impact the maintainability.

• Eight other classes should be categorized as B rather than as C. For them, there is
room for improvement but the effort for change remains moderate.

• For two classes, no flaws were obvious.

More details about the manual inspection and the specific findings in the 18 classes can
be found in Appendix F.

As the application on JSweet showed, a manual, labor-intensive source code in-
spection can be accelerated: most of the classes that were highlighted as bad by the
vectorizing model indeed contained flaws even if they did not impact the maintain-
ability devastatingly. Thus, the false positive rate in terms of highlighting weak spots
in source code is found to be low. The two classes that were actually found to be
highlighted totally wrong are similar to the extent that they both contain switch state-
ments. Apparently, these statements only occurred for bad classes in the training
dataset of Subsection 9.1.2. This might have led to overfitting so that all classes with
switch statements are predicted to be bad.

3https://github.com/cincheo/jsweet; hash of commit: 2e8800dedb4c8e9f7dd1b64e8889e5ab208c6b15
4http://www.jsweet.org/

61

https://github.com/cincheo/jsweet
http://www.jsweet.org/

9. Application on Class Level

Even though overfitting apparently occurred due to the tiny dataset for the model
optimization, the trained model of the experiment can be applied for health checks.
This application illustrates the applicability of the vectorizing model on class level
and demonstrated the successful vectorization of maintainability related information.
Thus, RQ2 and RQ3 of Chapter 3 were answered for the class level. Additionally, the
successful maintainability forecasting in the field of health checks not only realizes our
motivation but also demonstrates that our approach is able to capture characteristics of
source code as a human would do.

62

10. Future Work

Even though Chapter 8 and Chapter 9 show some promising application areas for
the approach of this thesis, the application of the vectorizing model is limited. By
extending and generalizing the approach, additional use cases can be made possible.
First of all, the current implementation of this approach is limited to Java versions up
to Java 8. As a proof of concept, this limitation is acceptable. However, future work
can explore alternative parsers to OpenJDK 8 in order to support all Java versions. The
graph creation of Chapter 5 should then be adapted.

Not all health checks at itestra GmbH involve Java as programming language. To
ensure a universal applicability of our methodology, the graph creation has to support
other programming languages like C++ or C#. Nevertheless, not only common object-
oriented programming languages should be supported but also imperative languages
like C, functional languages like Haskell or legacy languages like COBOL. The graph
creation of Chapter 5 might highly vary for each of the aforementioned since each
language and paradigm has its own characteristics.

Due to the time constraints for creating this thesis, an intense evaluation of graph and
model variations was not realized. This means that our evaluation – which assessed
the graph creation and the vectorizing model in combination – can be complemented
with studies that replace or adapt the methodology of Chapter 5 or Chapter 6. For
instance, the vectorizing model could be compared to other ML algorithms that cope
with graphs. The results answer then the question whether the vectorizing model
– which evolved from continuous adaptions for increased performance – is the best
choice in order to learn from the graphs of Chapter 5. On the other hand, the graph
creation could also be altered by means of an ablation study so that the performance
influences due to graph extensions or reductions become obvious. This evaluation of
adaptions in future work would provide quantitative results for determining the best
methodology in the context of a specific application.

As explained in Section 4.3, our approach assumes a supervised setting. Conse-
quently, a training dataset has always to be supplied in order to adapt the vectorizing
model. This can lead to small datasets due to the manual creation or datasets with
inconsistent labels. Both scenarios occurred in Chapter 8 and Chapter 9 respectively.
Generating training data or employing unsupervised algorithms can help to overcome
these issues. For instance, approaches that are proposed for image data augmentation

63

10. Future Work

can possibly adjusted for our ML setting. Several data augmentation solutions in image
classification are evaluated by Perez et al. [PW17]. With these solutions, small datasets
can be automatically extended. On the other hand, unsupervised algorithms can help to
embed distinctive characteristics in vectors. As an example, Kipf et al. [KW16] propose
to auto encode graphs with unsupervised learning. This or similar attempts of auto
encoding graphs and the meaningfulness of the resulting software vectors could be
explored in future work as well.

64

11. Conclusion

The goal of this thesis is the creation of fixed-length vectors from software. The vectors
have to be meaningful so that they allow further processing with diverse machine
learning algorithms. The goal is realized by proposing a methodology to learn a
vector representation for Java source code elements. The elements comprise instances of
different source code levels: methods, classes, packages and projects. The learning process
is realized by transforming the instances to graphs first and applying a supervised
machine learning algorithm on the graphs afterwards. The result of this process is a
trained machine learning model.

The application of our approach demonstrated that the ML model is able to capture
great parts of the method nomenclature in form of vectors. The resulting fixed-length
representations of the methods were then successfully processed, e.g., with nearest
neighbor algorithms. Further investigations included the training of the model with
the expertise of code reviewers. To that effect, Java classes that impact the maintain-
ability were successfully detected during the analysis of the JSweet project. Hence, our
methodology is not only applicable for vectorizing source code but also for predicting
software characteristics from the vectors. Thus, the application showed that the pro-
posed methodology is indeed capable of learning meaningful vector representations
for source code elements.

Whether the method or class level are better suited for the software analysis, could
not be answered since the particular experiments involved single label and multilabel
classification respectively which are incomparable. However, both granularities revealed
information that is helpful for an automated software analysis. Thus, the method as
well as the class level are both suitable for analyses based on the vectorized source code
elements.

To that effect, the flexible computation of vectors for different granularities in the
source code allows the tuning towards a broad variety of application areas. This also
includes health checks at itestra GmbH. This means that our work not only successfully
realizes the initial goal but also ensures the applicability for our original motivation.

65

A. List of Abbreviations

AST Abstract Syntax Tree
CNN Convolutional Neural Network
GG-NN Gated Graph Neural Network
GRU Gated Recurrent Unit
IR Intermediate Representation
JDK Java Development Kit
LOC Lines of Code
LSTM Long Short-Term Memory
ML Machine Learning
NL Natural Language
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SVM support vector machine
t-SNE T-distributed Stochastic Neighborhood Embedding

66

B. OpenJDK 8 AST Nodes

Information about the Java language and its structure can be found in the language spec-
ification1. The AST nodes were extracted from com.sun.tools.javac.tree.JCTree in the official
OpenJDK 8 repository2: all nested classes that inherit from com.sun.tools.javac.tree.JCTree
and are not marked as abstract are considered as possible nodes. The following table is
the result3:

Node Name Description Comment
JCAnnotatedType
JCAnnotation
JCArrayAccess An array selection
JCArrayTypeTree An array type, A[]
JCAssert An assert statement.
JCAssign A assignment with "=".
JCAssignOp An assignment with "+=", "|=" ...
JCBinary A binary operation.
JCBlock A statement block.
JCBreak A break from a loop or switch.
JCCase A "case :" of a switch.
JCCatch A catch block.
JCClassDecl A class definition. Enums, interfaces and an-

notations are also consid-
ered to be classes.

JCCompilationUnit Everything in one source file is kept
in a JCCompilationUnit structure.

JCCompilationUnit is the
root node of a source file.

JCConditional A () ? () : () conditional expression
JCContinue A continue of a loop.
JCDoWhileLoop A do loop
JCEnhancedForLoop The enhanced for loop.
JCErroneous
JCExpressionStatement an expression statement
JCFieldAccess Selects through packages and classes

1https://docs.oracle.com/javase/specs/jls/se8/html/index.html
2https://hg.openjdk.java.net/jdk8/jdk8/langtools
3The descriptions are extracted from the documentation of com.sun.tools.javac.tree.JCTree whereas the

comments were added by ourselves for additional information.

67

https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://hg.openjdk.java.net/jdk8/jdk8/langtools

B. OpenJDK 8 AST Nodes

JCForLoop A for loop.
JCIdent An identifier
JCIf An "if () else " block
JCImport An import clause.
JCInstanceOf A type test.
JCLabeledStatement A labelled expression or statement.
JCLambda A lambda expression.
JCLiteral A constant value given literally.
JCMemberReference Selects a member expression.
JCMethodDecl A method definition. Constructors are also con-

sidered to be methods.
JCMethodInvocation A method invocation
JCModifiers
JCNewArray A new[...] operation.
JCNewClass A new(...) operation.
JCParens A parenthesized subexpression (...
JCPrimitiveTypeTree Identifies a basic type.
JCReturn A return statement.
JCSkip A no-op statement ";".
JCSwitch A "switch () " construction.
JCSynchronized A synchronized block.
JCThrow A throw statement.
JCTry A "try catch () finally " block.
JCTypeApply A parameterized type, T<...>
JCTypeCast A type cast.
JCTypeIntersection An intersection type, T1 & T2 & ...
JCTypeParameter A formal class parameter.
JCTypeUnion A union type, T1 | T2 | ...
JCUnary A unary operation.
JCVariableDecl A variable definition.
JCWhileLoop A while loop
JCWildcard
LetExpr (let int x = 3; in x+2) This is a node created by

OpenJDK for handling au-
toboxing.

TypeBoundKind

68

C. Method Level Model Configuration

Several hyperparameters are mentioned in Chapter 6. For the experiment in Section 8.1,
the hyperparameters that emerged for an optimal property prediction are listed here1.

• The hidden dimensions are set as follows:

ngraph = 96

nedge = 16

• The number of vertex vector update iterations is set to k = 4.

• The vocabularies were limited to the following percent thresholds:

tvertex = 0.98

tedge = 1.00

tproperty = 0.90

• The number of nodes in a graph is restricted by t#nodes = 200.

• The count of labels per node is limited to 10, whereas the count of graph properties
is restricted to 15.

• The maximum number of weight matrices is set by the following parameters:

t#aggr = 2

t#att = 2

t#inc = 1

1For the optimization of the ML model, a machine with 32GB RAM was used.

69

D. Method Similarity in Guava

For the method similarity search, the method vectors were calculated with the trained
model of Subsection 8.2.2. By choosing a base method, similar methods in Guava can
be identified by comparing the method vectors. The metric for the similarity is the
cosine distance.

The method put(K,V) from the class com.google.common.collect.CompactHashMap was
chosen as starting point. The following two methods were the closest ones to put(K,V):

• replace(K,int,V,V) in com.google.common.cache.LocalCache.Segment. It has a cosine
distance of 0.085 to put(K,V).

• storeLoadedValue(. . .) in com.google.common.cache.LocalCache.Segment. It has a cosine
distance of 0.088 to put(K,V).

The source code of the respective methods is printed below.

70

D. Method Similarity in Guava

put(K,V)

public @Nullable V put(@Nullable K key, @Nullable V value) {

long[] entries = this.entries;

Object[] keys = this.keys;

Object[] values = this.values;

int hash = smearedHash(key);

int tableIndex = hash & hashTableMask();

int newEntryIndex = this.size; // current size, and pointer to the entry to be

appended

int next = table[tableIndex];

if (next == UNSET) {

table[tableIndex] = newEntryIndex;

} else {

int last;

long entry;

do {

last = next;

entry = entries[next];

if (getHash(entry) == hash && Objects.equal(key, keys[next])) {

@SuppressWarnings("unchecked") // known to be a V

@Nullable

V oldValue = (V) values[next];

values[next] = value;

accessEntry(next);

return oldValue;

}

next = getNext(entry);

} while (next != UNSET);

entries[last] = swapNext(entry, newEntryIndex);

}

if (newEntryIndex == Integer.MAX_VALUE) {

throw new IllegalStateException("Cannot contain more than Integer.MAX_VALUE elements!

");

}

int newSize = newEntryIndex + 1;

resizeMeMaybe(newSize);

insertEntry(newEntryIndex, key, value, hash);

this.size = newSize;

if (newEntryIndex >= threshold) {

resizeTable(2 * table.length);

}

modCount++;

return null;

}

71

D. Method Similarity in Guava

replace(K,int,V,V)

boolean replace(K key, int hash, V oldValue, V newValue) {

lock();

try {

long now = map.ticker.read();

preWriteCleanup(now);

AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;

int index = hash & (table.length() - 1);

ReferenceEntry<K, V> first = table.get(index);

for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {

K entryKey = e.getKey();

if (e.getHash() == hash

&& entryKey != null

&& map.keyEquivalence.equivalent(key, entryKey)) {

ValueReference<K, V> valueReference = e.getValueReference();

V entryValue = valueReference.get();

if (entryValue == null) {

if (valueReference.isActive()) {

// If the value disappeared, this entry is partially collected.

int newCount = this.count - 1;

++modCount;

ReferenceEntry<K, V> newFirst =

removeValueFromChain(

first,

e,

entryKey,

hash,

entryValue,

valueReference,

RemovalCause.COLLECTED);

newCount = this.count - 1;

table.set(index, newFirst);

this.count = newCount; // write-volatile

}

return false;

}

if (map.valueEquivalence.equivalent(oldValue, entryValue)) {

++modCount;

enqueueNotification(

key, hash, entryValue, valueReference.getWeight(), RemovalCause.REPLACED);

setValue(e, key, newValue, now);

evictEntries(e);

return true;

} else {

// Mimic

// "if (map.containsKey(key) && map.get(key).equals(oldValue))..."

recordLockedRead(e, now);

72

D. Method Similarity in Guava

return false;

}

}

}

return false;

} finally {

unlock();

postWriteCleanup();

}

}

storeLoadedValue(K,int,LoadingValueReference<K,V>,V)

boolean storeLoadedValue(K key, int hash, LoadingValueReference<K, V> oldValueReference,

V newValue) {

lock();

try {

long now = map.ticker.read();

preWriteCleanup(now);

int newCount = this.count + 1;

if (newCount > this.threshold) { // ensure capacity

expand();

newCount = this.count + 1;

}

AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;

int index = hash & (table.length() - 1);

ReferenceEntry<K, V> first = table.get(index);

for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {

K entryKey = e.getKey();

if (e.getHash() == hash

&& entryKey != null

&& map.keyEquivalence.equivalent(key, entryKey)) {

ValueReference<K, V> valueReference = e.getValueReference();

V entryValue = valueReference.get();

// replace the old LoadingValueReference if it's live, otherwise

// perform a putIfAbsent

if (oldValueReference == valueReference

|| (entryValue == null && valueReference != UNSET)) {

++modCount;

if (oldValueReference.isActive()) {

RemovalCause cause =

(entryValue == null) ? RemovalCause.COLLECTED : RemovalCause.REPLACED;

enqueueNotification(key, hash, entryValue, oldValueReference.getWeight(),

cause);

newCount--;

}

setValue(e, key, newValue, now);

73

D. Method Similarity in Guava

this.count = newCount; // write-volatile

evictEntries(e);

return true;

}

// the loaded value was already clobbered

enqueueNotification(key, hash, newValue, 0, RemovalCause.REPLACED);

return false;

}

}

++modCount;

ReferenceEntry<K, V> newEntry = newEntry(key, hash, first);

setValue(newEntry, key, newValue, now);

table.set(index, newEntry);

this.count = newCount; // write-volatile

evictEntries(newEntry);

return true;

} finally {

unlock();

postWriteCleanup();

}

}

74

E. Class Level Model Configuration

Several hyperparameters are mentioned in Chapter 6. For the experiment in Section 9.1,
the hyperparameters that emerged for an optimal maintainability prediction are listed
here1.

• The hidden dimensions are set as follows:

ngraph = 40

nedge = 8

• The number of vertex vector update iterations is set to k = 4.

• The vocabularies were limited to the following percent thresholds:

tvertex = 0.90

tedge = 1.00

tproperty = 1.00

• The number of nodes in a graph is restricted by t#nodes = 1250.

• The count of labels per node is limited to 10. The count of graph properties is
always 1 since the decoder for single label classification is employed.

• The maximum number of weight matrices is set by the following parameters:

t#aggr = 1

t#att = 1

t#inc = 1

1For the optimization of the ML model, a machine with 32GB RAM was used.

75

F. Findings in JSweet

During the evaluation in Section 9.2, the vectorizing model highlighted 18 classes of
JSweet as C. This means that these classes should be hard to maintain [Sch+19]. The
18 classes and their maintainability flaws are listed here. The flaws were identified
with a manual inspection by ourselves. Thus, the following judgment is subject to our
intuition.

org.jsweet.transpiler.extension.Java2TypeScriptAdapter

This class was found to be indeed part of the category C. The maintainability is heavily
impacted by the length of the class (> 1500 LOC) and the complexity of its methods. On
method contains even more than 900 LOC. The statement nesting depth in the methods
additionally reduces the comprehensibility.

org.jsweet.transpiler.Java2TypeScriptTranslator

This class was also found to be correctly labeled as C. It contains over 5800 LOC. This
causes that a high effort is needed to change the class without unwanted side-effects.

org.jsweet.transpiler.JSweetTranspiler

Again, this class was correctly categorized as C. The size of 1800 LOC can cause severe
maintainability issues. Even though the size of the contained methods is moderate, the
amount of methods and their statement nesting depth reduces the comprehensibility
as well as the maintainability.

org.jsweet.transpiler.OverloadScanner

The class should be part of the category C. Even though the size of the class is acceptable
(< 500 LOC), the high statement nesting depth severely impacts the maintainability.

org.jsweet.transpiler.extension.RemoveJavaDependenciesAdapter

The label C was predicted correctly. The size of nearly 1800 LOC encourages this
prediction. Furthermore, the categorization is strengthened by the heavy use of case or

76

F. Findings in JSweet

else if statements in the methods.

org.jsweet.transpiler.util.Util

The class should be labeled as C again. Reasons are the size of the class (> 1500 LOC)
and the amount of methods (close to 80 methods).

org.jsweet.transpiler.util.JSDoc

The class is indeed found to be part of category C. The complex methods impact the
maintainability.

org.jsweet.transpiler.JSweetContext

Due to its length (> 1800 LOC) and its high number of methods, the class is correctly
labeled as C.

org.jsweet.JSweetCommandLineLauncher

The class does not severely impact the maintainability, it is considered to be labeled as
B. The definition and processing of many command line arguments is confusing and
could be improved.

org.jsweet.transpiler.extension.PrinterAdapter

The class should be rather part of category B than C. Even though the class size (> 1000
LOC) and the high amount of methods reduces the maintainability, the contents are
fairly easy to comprehend and change.

org.jsweet.transpiler.util.AbstractTreeScanner

The label B is appropriate for this class. The moderately high statement nesting depth
of many methods makes the class unnecessarily complicated.

org.jsweet.transpiler.eval.JavaEval

The class consists of one method only. The content of the method is rather complex but
does not heavily impact the maintainability. Since there is room for improvement, the
label B is appropriate.

77

F. Findings in JSweet

org.jsweet.transpiler.eval.JavaScriptEval

The statement nesting depth decreases the comprehensibility of this class slightly. Thus,
it is considered to be part of category B.

org.jsweet.transpiler.extension.MapAdapter

The use of a switch with many case statements slightly decreases the maintainability.
Since no other flaws are apparent, this class is found to be labeled as B.

org.jsweet.JSweetFileWatcher

This class should also be labeled as B: nested try-catch bodies and for{::} loops impact
the maintainability.

org.jsweet.transpiler.extension.BigDecimalAdapter

The use of multiple case statements with separate return statements causes this class to
be labeled as B.

org.jsweet.transpiler.JSweetDiagnosticHandler

This class should be labeled as A. No flaws are apparent.

org.jsweet.transpiler.model.support.UtilSupport

Since no flaws are obvious, this class should be labeled as A as well.

78

List of Figures

4.1. The vectorizing model is the focus of this thesis. Machine learning
models that are applied to the vectors are indirectly applied to the
software. 8

4.2. The vectorizing model is based on the encoder-decoder framework that
connects the encoder and the decoder by a fixed-length vector. During
the training phase of the model, the encoder and decoder are optimized
according to the given combinations of graphs and properties. For the
vectorization of a graph, the decoder is omitted. 11

5.1. An exemplary method. 14
5.2. The AST is the basis for the method graph. In this figure, the AST of the

method in Figure 5.1 is illustrated as a directed graph. 15
5.3. The final graph for the method in Figure 5.1. Nodes and edges that were

added to the graph in Figure 5.2 are highlighted in color. 16
5.4. An exemplary class. 18
5.5. The figure shows the truncated graph after the transformation step for the

class in Figure 5.4. The children of the blue JCBlock were cut away. Some
other subgraphs were omitted due to their irrelevance. The omittance is
indicated by ellipses. As constructors are also referred to as methods in
the OpenJDK, the leftmost JCMethodDecl node is the constructor of the
class. 19

6.1. A part of the method graph of Figure 5.3 is shown. Omitted subgraphs
are indicated with ellipses. 25

6.2. The initial hidden representations were assigned to the nodes of Fig-
ure 6.1. The edges have a latent vector as well. The indices enhance the
distinction of different values but have no deeper meaning. 26

6.3. The figure illustrates the aggregation of the forward and backward
neighborhood of a vertex. The graph is the one shown in Figure 6.2.
Vertex v4 was chosen exemplarily. 29

79

List of Figures

7.1. The figure illustrates the most relevant classes and their dependencies
in the graph creation program. Packages are illustrated with dotted
rectangles whereas all other rectangles represent a class. The dashed
arrows indicate inheritance. All other arrows indicate that a method
from the destination class is directly called in the source class. 40

7.2. Each Python source file is illustrated as a separate rectangle. The arrows
indicate whether contents of a file are imported in another file. 42

8.1. The figure shows the graph of Figure 5.3 with omitted subgraphs. For
the evaluation on method names, the vertex highlighted in blue will be
cut off. 47

8.2. Each point in the figure represents a method of the Guava library. The
position of the points is determined by t-SNE which was applied on the
method vectors. The orange rectangle highlights some of many point
accumulations. Please note that the axes and their scales are figured out
by t-SNE and have no deeper meaning. 54

9.1. The distribution of the labels A, B and C in the parsed classes. This
distribution is preserved in the particular datasets. The datasets are
shown in Table 9.1. 59

80

List of Tables

6.1. Exemplary distribution of vertex labels for a training set. The labels
are sorted according to their frequency. The percentiles sum up the
percentage of the current label and all labels that are more or equally
frequent. 35

8.1. The table enumerates information about the respective datasets. The
collected Java projects stem from similar application areas in order to
allow a fair evaluation. 49

8.2. The table highlights the prediction scores for the dataset of Table 8.1. . 51

9.1. The table lists the amount of labels in each dataset. The classes were split
50-30-20 into training, validation and test set. The percentage of labels is
preserved in each dataset. 59

9.2. The table shows the distribution of predictions with absolute numbers
for the test set of Table 9.1. It highlights which labels were predicted for
each category. 60

81

Bibliography

[Aba+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. “TensorFlow: A System for Large-Scale
Machine Learning.” In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX Association,
2016, pp. 265–283. isbn: 978-1-931971-33-1.

[ABK17] M. Allamanis, M. Brockschmidt, and M. Khademi. “Learning to Represent
Programs with Graphs.” In: CoRR abs/1711.00740 (2017). arXiv: 1711.
00740.

[All+15] M. Allamanis, D. Tarlow, A. D. Gordon, and Y. Wei. “Bimodal Modelling
of Source Code and Natural Language.” In: Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning - Volume 37.
ICML’15. Lille, France: JMLR.org, 2015, pp. 2123–2132.

[Alo+18a] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. “A General Path-Based Rep-
resentation for Predicting Program Properties.” In: CoRR abs/1803.09544
(2018). arXiv: 1803.09544.

[Alo+18b] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. “code2vec: Learning Dis-
tributed Representations of Code.” In: CoRR abs/1803.09473 (2018). arXiv:
1803.09473.

[ALY18] U. Alon, O. Levy, and E. Yahav. “code2seq: Generating Sequences from
Structured Representations of Code.” In: CoRR abs/1808.01400 (2018).
arXiv: 1808.01400.

[APS16] M. Allamanis, H. Peng, and C. Sutton. “A Convolutional Attention Network
for Extreme Summarization of Source Code.” In: International Conference on
Machine Learning (ICML). 2016.

[BCB14] D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by
Jointly Learning to Align and Translate.” In: CoRR abs/1409.0473 (2014).
arXiv: 1409.0473.

82

https://arxiv.org/abs/1711.00740
https://arxiv.org/abs/1711.00740
https://arxiv.org/abs/1803.09544
https://arxiv.org/abs/1803.09473
https://arxiv.org/abs/1808.01400
https://arxiv.org/abs/1409.0473

Bibliography

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 0387310738.

[BJH18] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler. “Neural Code Comprehension:
A Learnable Representation of Code Semantics.” In: CoRR abs/1806.07336
(2018). arXiv: 1806.07336.

[BKV09] R. Bell, Y. Koren, and C. Volinsky. “Matrix Factorization Techniques for
Recommender Systems.” In: Computer 42.08 (Aug. 2009), pp. 30–37. issn:
0018-9162. doi: 10.1109/MC.2009.263.

[BP88] B. W. Boehm and P. N. Papaccio. “Understanding and controlling soft-
ware costs.” In: IEEE Transactions on Software Engineering 14.10 (Oct. 1988),
pp. 1462–1477. issn: 0098-5589. doi: 10.1109/32.6191.

[Cho+14] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and
Y. Bengio. “Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation.” In: CoRR abs/1406.1078 (2014). arXiv:
1406.1078.

[Chu+14] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. “Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence Modeling.” In: CoRR
abs/1412.3555 (2014). arXiv: 1412.3555.

[Dei+10] F. Deißenböck, L. Heinemann, B. Hummel, and E. Juergens. “Flexible
Architecture Conformance Assessment with ConQAT.” In: Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering - Volume
2. ICSE ’10. Cape Town, South Africa: ACM, 2010, pp. 247–250. isbn: 978-1-
60558-719-6. doi: 10.1145/1810295.1810343.

[DP05] F. Deißenböck and M. Pizka. “Concise and consistent naming [software
system identifier naming].” In: 13th International Workshop on Program Com-
prehension (IWPC’05). May 2005, pp. 97–106. doi: 10.1109/WPC.2005.14.

[DTP16] H. K. Dam, T. Tran, and T. Pham. “A deep language model for software
code.” In: CoRR abs/1608.02715 (2016). arXiv: 1608.02715.

[Haw04] D. Hawkins. “The Problem of Overfitting.” English (US). In: Journal of
Chemical Information and Modeling 44.1 (Jan. 2004), pp. 1–12. issn: 1549-9596.
doi: 10.1021/ci0342472.

[Hen+18] J. Henkel, S. Lahiri, B. Liblit, and T. W. Reps. “Code Vectors: Understanding
Programs Through Embedded Abstracted Symbolic Traces.” In: CoRR
abs/1803.06686 (2018). arXiv: 1803.06686.

83

https://arxiv.org/abs/1806.07336
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/32.6191
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
https://doi.org/10.1145/1810295.1810343
https://doi.org/10.1109/WPC.2005.14
https://arxiv.org/abs/1608.02715
https://doi.org/10.1021/ci0342472
https://arxiv.org/abs/1803.06686

Bibliography

[HS97] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.” In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.
1997.9.8.1735.

[Jai+16] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. “Structural-RNN: Deep
Learning on Spatio-Temporal Graphs.” In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2016, pp. 5308–5317. doi: 10.
1109/CVPR.2016.573.

[KB14] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.”
In: CoRR abs/1412.6980 (2014). arXiv: 1412.6980.

[KKP07] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas. “Data Preprocessing
for Supervised Leaning.” In: International Journal of Computer, Electrical,
Automation, Control and Information Engineering 1.12 (2007), pp. 4104–4109.
issn: eISSN:1307-6892.

[KW16] T. N. Kipf and M. Welling. “Variational Graph Auto-Encoders.” In: CoRR
abs/1611.07308 (2016). arXiv: 1611.07308.

[Li+15] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. “Gated Graph Sequence
Neural Networks.” In: CoRR abs/1511.05493 (2015). arXiv: 1511.05493.

[LPM15] M. Luong, H. Pham, and C. D. Manning. “Effective Approaches to Attention-
based Neural Machine Translation.” In: CoRR abs/1508.04025 (2015). arXiv:
1508.04025.

[MH08] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. 2008.

[Mik+13] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. “Distributed
Representations of Words and Phrases and their Compositionality.” In:
CoRR abs/1310.4546 (2013). arXiv: 1310.4546.

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn:
Machine Learning in Python.” In: Journal of Machine Learning Research 12
(2011), pp. 2825–2830.

[PW17] L. Perez and J. Wang. “The Effectiveness of Data Augmentation in Image
Classification using Deep Learning.” In: CoRR abs/1712.04621 (2017). arXiv:
1712.04621.

[RM87] D. E. Rumelhart and J. L. McClelland. “Distributed Representations.” In:
Parallel Distributed Processing: Explorations in the Microstructure of Cognition:
Foundations. MITP, 1987. isbn: 9780262291408.

84

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CVPR.2016.573
https://doi.org/10.1109/CVPR.2016.573
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1712.04621

Bibliography

[Sch+19] M. Schnappinger, M. H. Osman, A. Pretschner, and A. Fietzke. Learning a
Classifier for Prediction of Maintainability based on Static Analysis Tools. 2019.

[SS01] B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press,
2001. isbn: 0262194759.

[ST04] A. Shalloway and J. Trott. Design Patterns Explained: A New Perspective
on Object-Oriented Design (2Nd Edition) (Software Patterns Series). Addison-
Wesley Professional, 2004. isbn: 0321247140.

[Xu+15] B. Xu, N. Wang, T. Chen, and M. Li. “Empirical Evaluation of Rectified
Activations in Convolutional Network.” In: CoRR abs/1505.00853 (2015).
arXiv: 1505.00853.

[Xu+18] K. Xu, L. Wu, Z. Wang, Y. Feng, and V. Sheinin. “Graph2Seq: Graph to
Sequence Learning with Attention-based Neural Networks.” In: CoRR
abs/1804.00823 (2018). arXiv: 1804.00823.

85

https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1804.00823

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Research Question
	Overview of the Approach
	Source Code Levels
	Filtering of Source Code Levels
	Supervised Learning Setting
	Source Code as Machine Learning Input
	Model for Vectorization
	Procedure

	Transforming Source Code to Graphs
	Method Level
	Class Level
	Package Level
	Project Level

	Machine Learning Model
	Encoder – Graph Attention Network
	Initial Vertex Vectors
	Final Vertex Vectors
	Graph Vector

	Decoder
	Single Label Classification
	Multilabel Classification

	Hyperparameters
	Vocabulary Limitation
	Graph Size Limitation
	Trainable Matrices Limitation

	Implementation
	Graph Creation Program
	Parsing Library
	Structure

	Vectorizing Model Program
	Structure
	Execution Modes

	Application on Method Level
	Experiment – Semantic Vectorization
	Label Creation
	Setup
	Results
	Interpretation

	Discussion
	Practicality of the Experiment
	Usage Example

	Application on Class Level
	Experiment – Maintainability Forecasting
	Label Creation
	Setup
	Results

	Discussion

	Future Work
	Conclusion
	List of Abbreviations
	OpenJDK 8 AST Nodes
	Method Level Model Configuration
	Method Similarity in Guava
	Class Level Model Configuration
	Findings in JSweet
	List of Figures
	List of Tables
	Bibliography

