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Abstract—Before controlling the quality of software systems,
we need to assess it. In the case of maintainability, this of-
ten happens with manual expert reviews. Current automatic
approaches have received criticism because their results often
do not reflect the opinion of experts or are biased towards a
small group of experts. We use the judgments of a significantly
larger expert group to create a robust maintainability dataset.
In a large scale survey, 70 professionals assessed code from 9
open and closed source Java projects with a combined size of
1.4 million source lines of code. The assessment covers an overall
judgment as well as an assessment of several subdimensions of
maintainability. Among these subdimensions, we present evidence
that understandability is valued the most by the experts. Our
analysis also reveals that disagreement between evaluators occurs
frequently. Significant dissent was detected in 17% of the cases.
To overcome these differences, we present a method to determine
a consensus, i.e. the most probable true label. The resulting
dataset contains the consensus of the experts for more than
500 Java classes. This corpus can be used to learn precise and
practical classifiers for software maintainability.

Index Terms—Software Maintenance, Software Quality, Ma-
chine Learning, Software Measurement

I. INTRODUCTION

A. Background and Motivation

The quality of a software system is an important determinant

of its economic profitability. Especially maintenance costs

significantly contribute to the overall costs of a software sys-

tem [1]. Consequently, companies try to maintain their systems

as cost-efficiently as possible. Continuous quality control helps

in identifying potentials for improvements early [2]. Expert

reviews, for example, are a very precise evaluation method and

can even be tailored to specific business goals [3]. Automatic

approaches, on the other hand, are objective and fast. While the

key problem with expert reviews is their time-consuming and

expensive nature [4], [5], automated tools are often imprecise

and the results need to be interpreted [6]. Promising results

have been achieved using supervised machine learning to

predict the maintenance effort of a program. To evaluate

the performance of the different prediction approaches, a

variety of maintainability datasets are used. While some define

maintainability as the number of observed changes [7], others

use formal metric definitions [8]. Just as maintainability is

a subcategory of quality, maintainability can also be further

subdivided [9], [10]. However, few authors have considered

this distinction and define precisely which of these aspects

is predicted in the study. A positive example is the work of

Buse and Weimer [11], [12] and then Posnett et al. [13], who

developed a model to explicitly capture readability.

To automate expert reviews, the most promising approach

is arguably to use expert judgment as the ground truth. Garvin

was among the first to state that quality is a viewpoint

dependent attribute [14]. Therefore, it is crucial to investigate

and report how the experts form their opinion. Ideally, a

consensus of several experts is found as proposed by Rosqvist

et al. [15]. Though the ISO/IEC standard deliberately defines

quality vaguely and requires interpretation and tailoring [16],

one must understand the causal factors leading to a qualitative

statement. This is necessary because automated approaches

rely on well-defined labels. In the area of maintainability

prediction, there is little published data on which aspects the

experts considered in their evaluations and no investigation

of the disagreement between experts. However, the prediction

models developed by Pizzi et al. [17] and Hegedűs et al. [18]

are based on a dataset created by only one expert. Another

study [19] uses data labeled by three experts, but omits the

exact labeling procedure. The data of all three studies are not

publicly available for replication studies.

B. Contribution

In this paper, we present a large scale study that creates

a robust software maintainability dataset based on expert

evaluations. In total, 70 software analysts, researchers, and

developers working with e.g. Facebook, Oracle, or BMW

contributed around 2,000 manual assessments. This dataset

can be used to develop automated prediction tools. In contrast

to most other work using expert assessments, we analyse

in depth which aspects the experts had taken into account

during the assessment. In our study, we collected evaluations

of overall maintainability and several subcategories thereof.

Eventually, the created dataset contains labels for 519 Java

classes. The findings from this study make several contribu-

tions to the current literature: (1) we introduce a dataset for
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Fig. 1. Research Questions and Analyses.

future use in the maintainability research community; (2) an

adaption of an algorithm for automatically finding consensus

between experts; (3) several insights into expert judgments

of maintainability, including the diversity of opinions and

weighting of subcharacteristics; and (4) empirical evidence on

what makes code less maintainable, including commented-out

code, hardcoded values and quality of the comments.

C. Research Questions

The primary goal of this research is to create a large

and robust software maintainability dataset. To maximize the

potential of the dataset for future research, our study answeres

the following research questions:

It is known that maintainability is determined by several

subaspects. We hypothesize that these subaspects all contribute

to the overall evaluation of maintainability, but they do not

contribute equally. Thus, we pose our first research question:

Which subdimension of maintainability do experts value the

most? To put the results of this question into context, we

extend the focus of the data: Which other aspects do experts

consider to assess the quality of code?

Next, we investigate dissent and consensus between experts.

Based on the fact that quality is inherently subjective, we put

forward the hypothesis that expert opinions may differ. Con-

sequently, we investigate: In which cases do experts disagree

and how severe is the dissent? Assuming that experts may

disagree, the need to find a consensus between them emerges.

This motivates the next question: How can we automatically

aggregate the opinions of several experts, not knowing up-

front which expert is right? Eventually, our insights are used to

construct a useful and robust software maintainability dataset.

II. STUDY DESIGN

This section introduces the study objects, i.e. the analysed

source code, the recruited experts, and which labels they will

assign. As Fig. 1 shows, our research questions and analyses

are based on the ratings and comments provided by experts. An

insightful dataset is necessary to answer the research questions.

This dataset should consist of transparent labels provided by

qualified experts. Also, the systems should cover diverse do-

mains to mitigate domain-specific bias. To foster the practical

relevance, the systems should be written in a modern and often

used programming language. Though open source and closed

source software share common characteristics, they also differ

in some aspects [20]. To achieve better generalizability of the

results, the dataset should contain projects of both types.

A. Study Objects
We took code snippets from 9 different projects. These

projects are both open source projects and commercially

developed products. All chosen projects are developed in Java.

The sample covers a diverse range of domains and release

dates. We believe this to reflect real-world software systems

where quality reviews are applied. In a study by Ahmad and

Laplante [21], Art of Illusion was found to be a very complex

system. ArgoUML has previously been used in other qualita-

tive studies concerned with internal software quality [22]–[24]

as well. Hence, these systems seem appropriate choices with

existing quality flaws. In contrast, JUnit 4 is a very popular

open source framework for unit testing. We hypothesize this

system will not yield many quality issues.
The commercial systems are developed by two different

vendors and are taken from two separate software ecosystems.

Therefore, we consider these 9 projects to portray a corpus

with a high representativity. However, the study objects do not

cover every possible domain and only the Java programming

language. We decided to stick with one programming language

only to avoid context switching during the labeling process.

Java is considered one of the most popular programming

languages and there is a high demand for Java in industry1.

Hence, it is a reasonable choice. We selected the following

projects as sources for the code snippets:

• Open source projects:

– ArgoUML2: Tool to design, simulate and generate

code from UML diagrams

– Art of Illusion3: 3D Modeling and Rendering Studio

– Diary Management4: Multi-user calendar tool

– JUnit 45: Testing framework for Java programs

– JSweet6: Transpiler to convert Java code into

Javascript or Typescript code

• Commercial projects, anonymized:

– xApp: App used by insurance damage assessors

– xBackend: Backend of an insurance system

– xDispatch: Planning of personnel dispatch

– xPrinting: Printing and layouting of documents

1https://cce.fortiss.org/trends/radar/compare?technologies=java
2https://github.com/argouml-tigris-org/argouml
3http://www.artofillusion.org/
4https://sourceforge.net/projects/diarymanagement/
5https://junit.org/junit4/
6http://www.jsweet.org/
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TABLE I
INCLUDED SAMPLE PROJECTS

Project Domain Release Size in
SLOC

Files

ArgoUML UML Models 2010 177 k 1,904

Art of Illusion 3D Modeling 2013 118 k 470

Diary Management Calendar 2014 17 k 131

JSweet Code Transpiler 2019 79 k 1,933

JUnit 4 Software Testing 2014 25 k 383

xApp Insurance 2018 28 k 223

xBackend Insurance 2018 82 k 637

xDispatch Scheduling 2019 472 k 5,192

xPrinting Printing 2019 435 k 4,841

In total: 1.43 M 15,714

In total, these systems consist of 15,714 Java files and

account for 1.4 million source lines of code (SLOC), i.e. lines

of code without comments and blank lines. Table I lists more

details about the single projects including the release year.

Since Java is a rapidly evolving programming language, we

wanted to include code that does use newer features of Java as

well as older code that sticks to basic features. Furthermore,

we deliberately did not use the latest release for every project,

e.g. ArgoUML. This enables future research to compare the

maintainability, i.e. the maintenance effort predicted by the

experts, to the actually required effort.

Each data point in our dataset represents one .java file,

which - following the Java conventions - is equivalent to one

programming class. Too short code snippets might not provide

enough context for the analyst to reason about e.g. complexity

or understandability. Analysing larger chunks of software such

as packages, on the other hand, is very time-consuming and not

suitable to collect many evaluations. A class-level analysis is

a reasonable compromise between displaying context and the

time needed to assess the data. Most static analysis tools also

support class-level analysis, and this granularity is chosen by

related work as well [6], [7], [19], [21], [25], [26].

B. Study Participants

The target group of our study are software quality analysts,

researchers with a background in software quality, and soft-

ware engineers that are involved with maintaining software.

Some participants have up to 15 years of experience in quality

assessments. In sum, 70 professionals participated. First, we

invited selected experts to participate in the study. Second, we

asked them to disseminate the study to interested and qualified

colleagues. The survey was also promoted in relevant net-

works. The participants are affiliated with companies including

Airbus, Audi, BMW, Boston Consulting Group, Celonis, cesdo

Software Quality GmbH, CQSE GmbH, Facebook, fortiss,

itestra GmbH, Kinexon GmbH, MaibornWolff GmbH, Munich

Re, Oracle, and three universities. However, 7 participants did

not want to share their affiliation.

C. Label Definition

The label represents the perceived quality of a code snippet.

To be relatable, it should be as objective as possible. This

is a non-trivial task given that the perception of quality may

vary. We are meeting this challenge with two measures: finding

the consensus of several opinions and limiting the possible

perspectives under which quality is assessed. Consequently, we

have to explicitly define which quality attributes the experts

should focus on during the survey.

This study focuses on maintainability. Maintenance costs

are the biggest contributor to the economic effectiveness of

software systems [2], thus making maintainability a relevant

research area. Also, expert assessments are particularly valu-

able here as maintainability evaluations cannot be obtained

automatically. In the context of this work, we understand

maintainability as the estimated future maintenance effort of

a program class. This effort is influenced by several factors.

During quality assessments, analysts investigate different as-

pects of quality. To give a final assessment, they negotiate

with themselves a weighting of the observed dimensions.

In our study, we reproduce this thought process. The study

participant first evaluates the code with regard to various

more fine-grained criteria before giving a final statement on

maintainability. To record these ratings, a labeling platform

was implemented. Section III-A describes it in detail.

Here, we try to capture the expert opinion as directly as

possible. Consequently, we refrain from formal definitions and

capture the concepts as the analysts perceive them. In their

seminal book on survey design, Saris and Gallhofer point out

this important distinction between concepts-by-postulation and

concepts-by-intuition [27]. Asking an expert how they perceive

the complexity of a code snippet aims at the intuition of

the analyst, whereas measuring complexity using McCabe’s

cyclomatic complexity [28] is an example of the use of

postulation. One way to elicit opinions about concepts-by-

intuition is to pose statements and ask the participants whether

they agree or disagree [27]. We advocate a four-part Likert-

scale ranging from strongly agree to strongly disagree. From

our point of view, binary values do not reflect the way

experts perceive quality. In contrast, too many different values

to choose from might overwhelm the experts and borders

between the single categories will blur. Besides, a four-part

scale deprives participants of the possibility of choosing a

neutral position. Experts are forced to at least indicate a

tendency. Some studies [29] suggest asking study participants

how confident they are that their answer is correct. This is

rendered obsolete by the scale chosen, as the experts can

express their confidence with a clearer label on the four-

part scale. In favour of a faster labeling process, we limited

the survey to five dimensions: readability, understandability,

complexity, adequate size, and overall maintainability. The

more dimensions have to be considered, the more effort is

needed for the evaluation. This impacts the amount of data

that can be labeled in a given time. Besides, a more tedious

and more complex labeling process might decrease participant

motivation. It is unlikely that any set of questions can cover

the entire spectrum of software maintainability. Therefore, we

dedicate one question to the overall judgment. This means

that all subaspects that have not been covered by an explicit
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Fig. 2. Activities during the dataset creation: selection of code, prioritization of samples, labeling, validation, aggregation and analysis.

question can still influence an expert’s overall evaluation. In

the following, we explain the chosen dimensions and reasons

to select them. One key activity in software maintenance is

reading the existing source code [30]. Readability captures

how easy it is to syntactically parse the code. It is concerned

with e.g. indentation, line length, and identifier length. After

reading the code, all maintenance activities require maintainers

to comprehend the semantics of code they are going to

adapt [31]. Therefore, we are interested in assessing the

understandability of code. This attribute captures the effort

to understand which concepts the code implements and to

easily identify at which point a desired change must be

made. This concept is known to affect maintainability [32].

Understandability and readability are related but need to be

treated separately [13]. The distinction becomes clearer if we

consider very short variable names of just one character. Those

are easily readable, but might not yield enough information to

comprehend their meaning. In the next dimension, we attempt

to measure the complexity of a particular piece of code. This

is especially interesting, since most other approaches like

e.g. McCabe’s cyclomatic complexity [28], try to formalize

complexity. In contrast, we explicitly refrain from that and

use the concept-by-intuition. The last considered criterion is

the adequate size of the program class. One important aspect

of maintainability is modularity. The concept of modularity

as we usually understand it in software engineering cannot be

transferred to class-level code snippets one to one. Still, it is

partially applicable in the meaning of adequate sizing. In our

study, participants can express whether they think the code

should be split up into smaller snippets. This applies to both

the size of the class itself as well as its e.g. extra-long methods.

As explained above, the fifth label is the overall maintainability

of the code snippet according to the personal intuition.

D. Availability of the Dataset

The interest in automating software quality evaluations is

growing. Using publicly available data fosters the reproducibil-

ity of studies and enables fair comparisons. The results of this

study, i.e. the analysed open source code and the corresponding

labels, are shared in [33]. Please note that we only distribute

the code of the non-proprietary systems. The archive also

contains a summary of the dataset’s threats to validity.

III. DATA COLLECTION

Before we can answer the research questions, we have to

create a meaningful dataset. Such a dataset should consist of

representative data points and reliable labels. One of the first

things to consider is which projects to choose the samples

from and which experts to recruit for the evaluations. We

elaborated on that in Section II, whereas this section focuses

on how exactly we collected the data. The interaction of all

data collection activities is visualized in Fig. 2. The first

step is to extract code snippets from the study projects and

define in which order the snippets will be analysed. The

study participants then evaluate the code and assign labels.

Every code snippet is rated by several experts. Afterward,

the collected labels are validated. Eventually, we apply an

aggregation step. In this step, error probabilities for each

participant are computed and their consensus is determined.

A. Labeling Platform

The labels are collected per an easy-to-use online tool. Since

the study participants are volunteers, it is crucial to keep them

motivated. The code evaluation platform provides a modern

and intuitive frontend. No training period is needed. Every

participant owns a password-protected account. This enables a

sophisticated permission concept. The code of the commercial

systems is restricted to employees of that company and to

users owning explicit rights to inspect the code. Open source

code can be rated by every participant. After logging in, a

code snippet is presented to the user. To read the code as

conveniently as possible, users can select their favourite syntax

highlighting theme.

We ask the participants to rate each code snippet in five

dimensions: readability, understandability, complexity, modu-

larity, and overall maintainability. For every dimension, we

post one statement and the analysts express their opinion on

a four-part Likert-scale:
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Fig. 3. Screenshot of the labeling platform showing code and questionnaire.

• This code is easy to read
• The semantic meaning of this code is clear
• This code is complex
• This code should be split up into smaller pieces
• Overall, this code is maintainable
Besides, the platform allows to add free text comments as

well. Fig. 3 shows a screenshot of the survey tool. To foster

participation and keep the users motivated, the study imple-

ments gamification elements. For example, confetti animations

and motivational messages are displayed once the user has

committed a certain amount of labels. Ambitious users can

compare their performance with others on a public scoreboard.

To follow data privacy rules, participants must explicitly opt-in

to appear in this scoreboard.

B. Prioritization of Samples

We use static code metrics to guide the selection of code

snippets. To make efficient use of the experts’ time, the

snippets are labeled in a specific order. First, the extracted

metrics are used to cluster the code. Then, we prioritize them

by iterating through these clusters. The next code snippet to be

labeled is the snippet with the highest priority, from a codebase

to which the user has access rights, and that did not yet receive

enough valid ratings.

The combined size of the sample projects exceeds 1.4

million source lines of code and contains more than 15,000

files. The participation happens voluntarily, thus making it

Fig. 4. The distribution of the targeted sample in comparison to a random
sample.

illusional to aim for a dataset of 15,000 manually evaluated

classes. Paying study participants is beyond the possibilities

of this study due to the required expert knowledge. Since

we cannot reason about the time the experts will dedicate to

labeling, it is not possible to determine a feasible sample size

apriori. Hence, we apply prioritization instead of sampling.

From our experience, quality reviews target to identify spots

that are worth further investigation. A useful dataset must

hence include such cases. However, focusing too much on

suspicious data points would jeopardize the representative

nature of the dataset. Fig. 4 illustrates sample distributions

plotted towards an arbitrary dimension. The total distribution,

which is approx. normally distributed, is visualized as the

bell-shaped light blue curve. A random sample of, e.g., 25%,

would probably correspond to the dark blue curve. In the

diagram, one can see that this sample would hardly contain

any edge cases, neither on the small nor on the large end of

the axis. From quality assessments we know that classes with

extraordinary values provide the most insights to the analysts.

Therefore, we target a distribution that resembles the orange

curve. This curve has two main characteristics: First, it con-

tains significantly more edge cases than the random sample.

Second, it still roughly resembles the overall distribution and

does still contain many non-edge instances.

The theoretical foundation of our approach is as follows:

Unsupervised machine learning, i.e. clustering, groups data

points together that are more similar than others. The cluster-

ing algorithm uses static software metrics as characteristics to

define the clusters. These include structural metrics concerned

with nesting or size as well as more complex metrics like the

number of code smells. A list of the used metrics and tools is

published with the final dataset in [33]. Values are normalized

and Principal Component Analysis avoids that clusters are

distorted because of metrics measuring related properties.

Then, k-Means is run on the principal components with k
determined by the Expectation-Maximization Algorithm [34].

Some data points are more insightful than others because they

somehow differ from the average sample. We hypothesize that

those interesting cases can most probably be found in clusters

with only a few other members. Consequently, we prioritize
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TABLE II
ILLUSTRATION OF THE PRIORITIZATION ALGORITHM

Cluster # files Priorities assigned to
files in this cluster

# labeled
files

# labeled
files if

random
Cluster 0 10 1; 7; 21; 35;. . . 4 1

Cluster 1 46 2; 8; 22; 36;. . . 4 4

Cluster 2 55 3; 9-10; 23-24;
37-38;. . .

7 6

Cluster 3 68 4; 11-12; 25-26;
39-40;. . .

7 7

Cluster 4 109 5; 13-15; 27-29;
41-43;. . .

10 11

Cluster 5 182 6; 16-20; 30-34;
44-47;. . .

15 18

the data points starting with the smallest clusters. But, taking

only the potentially interesting files would lead to a dataset

that does not reflect the generality. Therefore, we only add a

relative share of max(1, 0.03 ∗ sizeofcluster) points of each

cluster to the prioritization queue. To ensure that at least one

sample of every cluster is labeled, we perform a start-up round.

Here, we label exactly one class from every cluster.

We illustrate the effect of this using the Art of Illusion sample

project. There were six clusters identified in this project. One

of the clusters contains only 10 files; we refer to this as

Cluster0. Let us assume that the experts manage to label 10

percent of the files in this project, i.e. 47 files. If we chose

randomly which files to label, the probability that at least

one of the files from Cluster0 is among the labeled files is

1− (470 )(
460
47 )

(47047 )
= 65.5%. With our approach, the probability to

have at least one file from Cluster0 in the sample is 100%.

In fact, there will be exactly four files from Cluster0 in

the sample. Table II illustrates the algorithm. In the start-

up round, one class from every cluster is labeled, starting

with the smallest cluster, i.e. Cluster0. In the next iteration,

we select one sample from Cluster0, one from Cluster1, two

from Cluster3 and Cluster4 resp., three from Cluster4, and

five from Cluster5. This is performed iteratively until all files

are prioritized. Assuming that 47 data points could be labeled,

the final number of labeled data points per cluster is denoted

in the third column of Table II. The right-most column shows

how the distribution would look like on average had we used

random prioritization. It becomes obvious that our approach

shifts the focus from the large clusters to the smaller clusters,

where the most interesting files are located. Simultaneously,

the overall distribution of data points is respected.

C. Validation and Seriousness Checks

Every assessment is validated before it is included in our

dataset. The target group of our study are professional software

analysts, developers, and researchers. But since the labeling

platform is publicly accessible, the motivation of a participant

in general remains unknown and every participant needs to be

treated agnostically. Analysing the data for inconsistencies

can help to identify unserious participation [35]. In our study,

we take the combination of quality dimensions into account

and compare the values to known illicit combinations. E.g. if

a participant states the code snippet was easily maintainable,

while at the same time expresses it was neither readable nor

understandable and highly complex, that rating is considered

implausible. In that case, the plausibility score p ∈ [0; 1] is set

to 0, and 1 otherwise. The time needed to complete a task can

be used to filter out noise by spammers or unserious contribu-

tors as well [36]–[38]. The labeling platform measures the time

taken to create a rating. The number of characters an expert

assesses per second arguably follows a normal distribution.

We assume the faster an evaluation was finished, the more

implausible it becomes. If a rating was created significantly

faster than the average, i.e. more than two standard deviations

faster than the average, this rating is discarded. If it has been

created only slightly faster than the mean, we assign a linearly

interpolated credibility score c ∈ [0; 1]. There is no punishment

if the assessment took longer than the average.

D. Aggregation of Ratings

Quality is a viewpoint-dependent characteristic. As we

will present in Section IV, we found significant differences

between the expert assessments. To avoid biasing the results

towards the opinion of one expert, we aim to find a consensus

between them. Reaching a consensus usually involves con-

vincing others with arguments. But we refrain from finding

a consensus per discussion as proposed by Rosqvist [15].

To save time, we target a fully automatable process. In this

paper, we use the term consensus to refer to the result of

a weighted vote. Since the study participants have varying

backgrounds and experiences, it appears natural to not treat

every submission equally. Instead, we use an aggregation that

assigns weights to each rating. The result of the aggregation

is then considered the consensus. The Maximum Likelihood

Expectation Maximization Algorithm (EM algorithm) is a

statistical approach to determine such unknown weights itera-

tively [34]. Dawid and Skene [39] popularized this algorithm

for problems where different observers may report different

interpretations of the same yet unknown classification. They

use the example of several clinicians diagnosing a patient,

which transfers directly to our study where analysts diagnose

a code snippet. In both cases the true label is unknown. The

algorithm jointly maximizes the likelihood of experts’ error

rates, i.e., their reliability, and calculates the most probable

classification of the code or patient, respectively. This way,

the algorithm determines the consensus of the evaluators. The

error rates are stored and later on reported to the users as part

of a gamification approach. The quality of the aggregation

result depends on the chosen starting values of the reliabili-

ties [34], [39]. The initial weights incorporate knowledge from

the validation steps described in Section III-C. The product of

the plausibility score p and credibility score c forms the first

estimate of the weight.

IV. RESULTS

In total, 70 experts participated in this study and submitted

1976 ratings. Eventually, the labeled dataset consists of 519
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Fig. 5. The rating aggregation approach.

distinct code snippets. Here, we only consider code that

received three valid ratings.

A. Influences on the Perceived Maintainability

Strong evidence was found that the understandability of

code is valued more than its readability, complexity, or modu-

larization. In our study, every submitted evaluation comprises

an overall maintainability label, a label for each of the four

subdimensions and an optional comment. Every label is a

rating on a four-part Likert-scale.

The correlation between the perceived maintainability and

its subaspects is tested using Pearson’s Correlation Coeffi-

cient [40]. For this analysis, we convert every label to an

integer value between 1 and 4. The highest coefficient was

observed for understandability (0.80), followed by modular-

ization (-0.74), complexity (-0.73) and readability (0.72). The

questionnaire uses an inverted scale for modularization and

complexity, thus their correlation is negative. Notably, all

scores lie in a similar range. To refine the results, we also

apply the Relief algorithm modified for regression [41], [42].

This approach confirms understandability (0.18) as the most

influential subaspect. Readability (0.11), modularization (0.07)

and complexity (0.04) seem to be less expressive predictors. If

we treat the labels as nominal values instead of ordinal ones,

the results are still valid. We analysed the influence of the

subdimensions using information gain [43], information gain

ratio [43], and the performance of a simple one rule classifier

using only that single feature [44]. All three approaches

confirm the previous result and rank understandability higher

than the other three attributes.

The labeling platform provides the opportunity to submit

free text comments about the assessed code. This option

was used 198 times. A majority of participants used it to

summarize the evaluated code snippet or their assigned labels.

Other prominent topics were content or domain-specific re-

marks arguing about the specific implementation of a function.

Inconsistencies within the code snippet and hardcoded values

were perceived to hinder maintenance. Concerns regarding the

violation of coding conventions were also widespread. Another

recurring theme were comments in the evaluated code. Missing

comments in places where the code is difficult to understand

without further explanation was often perceived as negative.

Code in comments, bad quality of comments, and ‘todo‘ or

‘fixme‘ annotations were found irritating, too. Furthermore,

some participants felt distracted by long copyright statements.

B. Dissent and Consensus between Experts

We find that disagreement between experts happens often

and significantly. In our study, every code snippet was assessed

by at least three experts. There exist 2872 distinct rating

pairs, i.e. pairs of ratings for the same code by different

participants. In total, we find disagreement in 2107 of these

pairs (73.4%). This expresses that the experts disagreed in at

least one observed aspect. To distinguish between negligible

and significant dissent, we calculate the sum of the differences.

Please note that there were five questions asked. A cumulative

deviation greater than five therefore means that the individual

ratings deviate on average by more than one point in each

question. We observe such significant differences in 493

cases (17.2%). In 36 cases (1.2%), the difference was even

greater than ten. This threshold corresponds to an average

deviation greater than two in each question. In one actual

example, expert A assigned the ratings [1, 1, 3, 4, 1], while

expert B rated almost completely the opposite: [4, 3, 1, 1, 4].

This example will be examined further in the discussion.

Similar dissent can be found in many instances. One snippet,

e.g., was evaluated by four experts. Two experts agree in

pairs, but their opinion contradicts that of the other pair. Not

only does the evaluation of the single aspects vary, but we

also identify differences regarding the final judgment. Experts

assign identical ratings for the subdimensions but differ in the

overall judgment. We noticed this in 24 cases.

C. The Software Maintainability Dataset

To overcome the observed disagreement, a consensus should

be reached. In this study, the participants were not available

for discussions, therefore, the consensus has to be found

differently. We apply the EM algorithm to aggregate the

opinions of several participants. An in-detail description can be

found in Section III-D. The algorithm computes the probability

for each rating to be correct. For the remainder of this section,

we interpret the class with the highest probability as the final
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TABLE III
DISTRIBUTION OF LABEL ’OVERALL MAINTAINABILITY’ PER PROJECT

Project strongly
agree

weakly
agree

weakly
disagree

strongly
disagree

ArgoUML 34 25 11 4

Art of Illusion 10 20 25 18

Diary Management 7 2 2 0

JSweet 63 5 2 3

JUnit 4 60 12 1 0

xApp 21 10 3 1

xBackend 18 11 5 1

xDispatch 32 24 10 7

xPrinting 31 21 14 6

Across Projects 276 130 73 40

label. Table III shows the distribution of the final labels for the

overall maintainability of every study project. The last row of

the table summarizes the distribution across all projects. From

this data, it can be seen that positive assessments outweigh

negative evaluations. In total, 78% of the examined files are

reviewed as positive or very positive. Only 22% of the classes

are considered hard or very hard to maintain. In 8 out of

9 projects the majority of the assessed classes are perceived

as easily maintainable. Then, the number of classes in each

category diminishes with decreasing maintainability. The Art

of Illusion project is the only exception to this observation.

Here, the majority of the files are considered difficult to

maintain. Fig. 6 visualizes the overall distribution across all

projects. These pie charts also show the distribution across

all open source projects in comparison to the closed source

projects. In total, the dataset includes 304 open source classes

(59%) and 215 classes from closed source systems (41%). The

evaluated open source code and its labels are available at [33].

V. DISCUSSION

A. Discussing the Results

RQ1: Our study showed that understandability has the

highest impact on the overall maintainability of software. This

finding is of immediate interest to software developers since

understandability is an actionable characteristic. Developers

can actively aim to improve this attribute of their code and

thus improve its maintainability as such. We would like to

refer once again to the definition of modularity and under-

standability as it is applied here. In this study, the term

modularity is used to describe whether the class and its content

is of adequate size. Understandability refers to the ease to

identify concepts behind the code and identify where a certain

concept is implemented. Our results do not justify completely

neglecting any of the examined characteristics. All examined

aspects show a correlation with maintainability and can thus be

considered reasonable subcharacteristics. However, trade-offs

should be in favour of understandability.

RQ2: Missing necessary comments or comments of bad

quality were found to decrease the maintainability. This con-

firms that comments are important to comprehend code [45].

Also, it supports our finding that understandability is the

Fig. 6. The distribution of the label ’overall maintainability’ per project type.

most important quality characteristic. The negative statements

about commented-out code support this, too. There are several

reasons why code is stored in comments and not deleted [46].

However, the participants are afraid this code has to be

analysed thoroughly to figure out why it has not been deleted.

Since the code was taken from released products, ‘todo‘ and

‘fixme‘ annotations were perceived negatively for similar rea-

sons. Here, the maintainer must analyse whether the issue was

resolved or the code was released with incomplete features.

RQ3: Although the participants of this study are qualified

software analysts, engineers, or researchers and are affiliated

with renowned companies, their judgment is not unanimous.

We found the dissent within a group does not deviate much

from the dissent within all participants. However, we found

exceptions when focusing on significant dissent. Within one

company, we observe significant dissent in only 9.9% of the

cases, while across groups it occurs in 17.2%. Other user

groups do not show such deviations. One explanation could

be that dissent is mostly caused by personal preferences.

Another explanation might be bias introduced by various

domains. A software engineer who is mostly concerned with

automotive software might evaluate code from the insurance

domain differently than an engineer who is familiar with

the topic. To make reliable statements about the influence

of the domains, we would need a larger amount of ratings

per snippet. Otherwise, it is hard to reason that differences

occurred due to the domain and not by personal preferences.

To overcome the observed dissent, a consensus has to be

found. One instance, for example, was rated almost opposite

by some experts. The snippet contains both complex and

simple methods. Variable names are not self-explanatory, but

the code is well documented. In fact, one can find arguments

for positive and negative statements in every rating dimen-

sion. This instance exemplarily shows why it is important to

investigate expert evaluations in depth.

RQ4: The EM algorithm dynamically aggregates the ex-

perts’ ratings. Using predefined weights is not possible since

we do not know up front which experts are more reliable

than others. We refrained from using the job description and

experience of a participant here for three reasons: First, this

method can easily be manipulated by spammers. Second, it is

not trivial to define how, for example, five years of experience

as a developer should count against three years as an analyst.

Third, the approach suffers from the assumption that people

gain expertise through age only. While discussing the idea with

industrial partners, we learned that long years of experience are

not necessarily an indicator of higher reliability. Therefore, the

initial reliability score does not incorporate this information.
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B. Discussing the Dataset and Its Usage in Future Work

The created dataset can be used to design tools that predict

software maintainability. Furthermore, our dataset contains

data about the perceived understandability, readability,

adequate size, and complexity as well. Instead of aiming at

maintainability as such, future work can also focus on the

automatic assessment of these attributes.

One of the most interesting characteristics of the created

maintainability dataset is its unbalanced distribution. The

majority of the files were evaluated to be easily maintainable,

while only a few files were actually negatively perceived. This

is not an ideal basis for building classifiers. However, subse-

quent trimming of the data to a balanced form would lead to

too few data points to make reliable statements. Furthermore,

that trimmed dataset would not be representative anymore.

Nevertheless, the reported label distribution has implications

on the design of approaches to automate assessments. In

our sample, only 22% of the Java classes are considered

problematic. In software quality assessments, it is important

to precisely identify hotspots of bad quality. The challenge

now is to fabricate tools that identify these rare but important

instances reliably. The evaluation of tools should therefore give

special thought to the classification of these cases instead of

aiming for high overall precision and recall.

Although the label distribution is similar in 8 of the 9

analysed systems, it deviates considerably in the Art of

Illusion project. This emphasizes the importance to consider

data from several projects to base tool development on.

Additional studies can add more labels from further projects

and improve the generalizability of the results. Another

progression of this work is to compare the expert evaluations

to the observed maintenance effort. This work focuses on

the maintainability of software. Further studies focusing on

other dimensions can contribute to a holistic software quality

dataset.

C. Discussing the Methodology: Threats to Validity

To fully exploit the potential of prediction algorithms, a

well-researched dataset is needed. All studies reviewed so far,

however, suffer from at least one of the following drawbacks:

They consider only obsolete programming languages [7], use

a formal definition as the ground truth [8], keep the data

confidential and hinder replicability of the results [17], [19],

or lack generalisability due to a small number of sample

projects and experts [17], [19]. To mitigate the effect of

biased evaluators, we collaborated with 70 participants from

17 different companies. However, only selected participants

were allowed to inspect commercially developed software. To

avoid domain or project-specific bias, we included code from 9

projects, both open and closed source. Still, the analysed code

is only written in Java. Limiting the study to one language

eliminates the need to frequently accustom to new contexts.

We chose Java because of its high relevance in industry.

The prioritization impacts which classes are labeled first and

are thus part of the dataset. This is necessary because of the

size of the corpus. Given enough time, the prioritization would

not affect the created dataset at all. The algorithm is based

on code metrics. Their correlation with quality is known from

previous work [47]. However, the problem to predict maintain-

ability from metrics is not yet solved. To build useful tools,

the dataset has to contain all typical constellations of metrics.

The clustering groups data with similar constellations together.

Iterating through these clusters ensures that representatives of

all typical constellations are selected.

The labeling platform presents code snippets to experts

who evaluate the code. The granularity of Java classes was

chosen to keep the labeling effort feasible. This implies that

only intra-class characteristics can be evaluated. We are aware

that major aspects of software quality are inter-class attributes

such as cloning and coupling. These are not characteristics

of one isolated code snippet, but a class and its wider

context. We limited the scope of the assessments to intra-

class characteristics to foster the practicality and scalability

of the labeling. Had we included the context of a class in

the assessment, the labeling would have been far too time

consuming and complex to collect a reasonable amount of

labels. An interesting continuation of this work would be to

include more context and inter-class relationships.

The labeling platform only displays the code and its

location inside the package structure of the project. One

could argue that static analysis metrics are used in quality

assessments in practice [3] and should therefore be presented

here as well. Actually, we desist from that to avoid biasing the

results. The goal is to capture the experts’ opinions without

any other influences. To display metrics can take the focus

away from the code itself. Experts might be biased by implicit

thresholds, e.g. for the size of a class, and draw conclusions

based on that metric without actually reading the code. In

fact, showing metrics might lead to the wrong assumption

that they must be taken into account. The selection which

metrics to display and which not might consequently bias

the labeling even more. Most static measurements such as,

e.g., nesting depth can be observed directly from the code as

well. One notable exception that is indeed hard to identify

manually is intra-class cloning.

Most existing manually labeled quality datasets rely on one

single expert and his evaluation. Therefore, that data is highly

biased towards that expert’s subjective opinion. In our study,

every code snippet was evaluated by three participants. A

snippet may receive more than three ratings if several experts

are evaluating the same code snippet simultaneously.

Besides an overall judgment, we ask participants to assess

four selected subaspects of quality. The selection of these di-

mensions is discussed in detail in Section II-C. The analysis of

the submitted comments showed which aspects the participants

took into account in the evaluation. However, the analysis

could only respect those aspects that the experts found worth

mentioning. Therefore, the list is not exhaustive.
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VI. RELATED WORK

Software quality is subject to many influences. For example,

Naggapan et al. showed the correlations between organiza-

tional structures and software quality [48]. Previous research

established that software quality consists of several subdimen-

sions, such as maintainability [9], [10]. The ISO/IEC standard

on software quality [9] deliberately does neither define weights

to aggregate the subcharacteristics nor how to measure them.

One method to reason about the quality of software is to

rely on expert judgment. Code reviews can help to evaluate

and control the quality of programs [4], [5]. Expert-based

assessments are subjective to the expert conducting it. Rosqvist

et al. [15] propose to incorporate the uncertainty of experts and

the level of consensus between them.

Though the automatic extraction of metrics is arguably

faster than manual reviews, there are also drawbacks of

such tools. Several studies point out that automated tools

are prone to false positives [49], [50]. Consequently, the

metrics have to be put into context [3] and interpreted by

a human expert [6]. Benestad et al. [6] even advocate clear-

cut strategies for selection, aggregation, and interpretation of

the collected metrics. One promising approach to combine the

advantages of automation and reviews is supervised machine

learning. Li and Henry [7] published an often used software

maintainability dataset. It consists of object-oriented metrics

they extracted from programs written in Classic-Ada. Here, the

maintainability of a program class is defined by the number

of changed lines in this class. Van Koten and Gray trained

Bayesian Networks on this data [51]. Kumar et al. applied

neuro-genetic algorithms [26], while others use regression-

based models [7], [18]. Misra [8] performed a study using

automatically labeled data. He used the Maintainability In-

dex [52] to express the maintainability of code. However, the

relation of these labels and the maintainability as perceived

by humans remains speculative. Other researchers base their

approaches on expert evaluations. Hayes and Zhao use the

perceived maintainability [53] but apply their approach only to

systems from student classes. In contrast, Pizzi et al. [17] used

data from one real-world system. However, only one expert

labeled the files. The same limitation is found in the study

of Hegedűs [18]. Schnappinger et al. [19] had three experts

evaluating code, but do not report the exact procedure.

However, it is important to define which aspects the

evaluators considered in the assessment. The correlations

between different quality characteristics was examined by

Jung et al. [16]. However, the participants of their study

were end-users who rated a software product. Correia et

al. [54] examined the correlations between system properties

and quality characteristics. They surveyed three experts and

defined the median as the consensus. In contrast, Tokmak and

colleagues [55] hint study participants should not be treated

equally. Their study indicates that experts and novices tend to

evaluate software differently. However, their work focuses on

quality in use.

In summary, little research was done on how experts per-

ceive quality and how they value different characteristics. This

is problematic since quality datasets are crucial to develop

effective prediction models. So far, often datasets are used

that do not consider expert reviews though they seem to be

superior to other approaches. In contrast, other studies follow

the experts’ assessment without further analysis. The study

presented in this paper closes this gap. Our research forms

a solid base on which future attempts to automate quality

assessments can build. We collect manual labels from a large

and diverse expert group, examine the evaluations thoroughly,

and identify which aspects of maintainability the experts took

into account.

VII. CONCLUSION

This study investigates expert evaluations of software main-

tainability and creates a robust maintainability dataset that

can be used to develop reliable prediction tools. In our

survey, 70 professionals assessed code from 9 open and closed

source software projects. The submissions included ratings

of the readability, understandability, complexity, modularity,

and overall maintainability of the code. The projects at hand

contain more than 15,000 files and account for 1.43 million

source lines of code. A sophisticated prioritization algorithm

defined the order in which the data points were labeled.

This keeps the dataset both representative and insightful. The

resulting dataset contains the consensus assessment of 519

Java classes. Interestingly, our work revealed that disagreement

between experts occurs frequently and considerably. Although

we narrowed down the number of perspectives the code has to

be evaluated from, we found significant dissent in 17% of the

cases. Small deviations are observed in 73%. Consequently,

we argue that a consensus between the experts has to be

found before relying on their evaluations. For this reason, we

presented an aggregation algorithm. Based on the submitted

ratings and the evaluators’ error probabilities, it determines

which judgment is most probably correct. In 8 out of 9

study projects, the majority of the files were considered to be

easily maintainable. Our analysis of the assessments revealed

that understandability has the highest impact on the overall

perceived maintainability. Whilst this attribute has the highest

influence neither readability nor complexity nor modularity

should be neglected. Furthermore, we identified which other

aspects of the code the experts took into account. Among

the most reported issues are violations of coding conventions,

commented-out code, todo or fixme annotations, and missing

or unhelpful comments.

Until now, most other software quality datasets are either

not based on expert judgment or rely on a small group of

experts without further analysis. This paper, however, provides

in-depth insights on how experts perceive quality. Moreover,

we showed that this perception can vary and that aggregating

ratings is therefore necessary and useful. Finally, we present

a robust dataset as the basis for building precise and useful

quality assessment tools. In the spirit of open science, the

evaluated open source code and its ratings are shared with the

scientific community.
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