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Abstract. Machine learning has emerged as a useful tool to aid software
quality control. It can support identifying problematic code snippets or
predicting maintenance efforts. The majority of these frameworks rely
on code metrics as input.

However, evidence suggests great potential for text- and image-based
approaches to predict code quality as well. Using a manually labeled
dataset, this preliminary study examines the use of five text- and two
image-based algorithms to predict the readability, understandability, and
complexity of source code.

While the overall performance can still be improved, we find Support
Vector Machines (SVM) outperform sophisticated text transformer mod-
els and image-based neural networks. Furthermore, text-based SVMs tend
to perform well on predicting readability and understandability of code,
while image-based SVMs can predict code complexity more accurately.

Our study both shows the potential of text- and image-based algo-
rithms for software quality prediction and outlines their weaknesses as a
starting point for further research.
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1 Motivation

With the rise of software, the assessment and improvement of its quality is an
increasingly vital challenge. To support software quality control, a variety of
automated tools and measurements exist. Still, some quality attributes are hard
to determine without manual reviews [44]. As human analysts are expensive,
predicting such properties with machine learning drew attention over the past
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years. For instance, it has successfully been applied to identify code smells [10,
13,33], support fault localization [48], and predict the maintainability of source
code [42] or code changes [23,27].

Most contemporary studies rely on static code metrics as proxies for the
actual source code. However, as Ray et al. [37] and Hindle et al. [19] point
out, source code and natural language share certain characteristics, too. Accord-
ingly, techniques originally designed for natural language have successfully been
applied to source code, e.g. to aid recovery attacks against obfuscated pro-
grams [39], predict bugs [19], or identify code smells [32].

Hence, we hypothesize such algorithms can be employed for software quality
prediction, too. Since readability and understandability are characteristics of
both natural language and source code, we conjecture these attributes can be
predicted particularly well using text-based machine learning.

Furthermore, there exists evidence that software analysts already build a
strong hypothesis based on their first impression of the code. When analyzing
and labeling the code used in this study, several experts confirmed they have
been able to get an accurate intuition of the quality of a code snippet by looking
at a visual representation of its overall structure, without going into syntactic or
semantic detail. This applies in particular to assessments about the complexity
and understandability of code. In this study, we try to mimic this process by
training machine learning algorithms on images of source code. An example of
such a visual representation is provided in Fig. 1.

Gap: Many researchers successfully applied machine learning on software
metrics to predict software quality [17,23,27,35,43]. However, despite recent
advances in text and image classification, these techniques are not used so far
to predict software quality attributes as perceived by human experts.

Solution: This preliminary study explores the potential of two yet unapplied
machine learning techniques for quality prediction. In this study, we conduct
experiments in both a multi(4)-class and a binary classification setting. We com-
pare the performance of five text-based and two image-based machine learning
approaches using a publicly available, manually labeled dataset. The code is
sampled from seven software projects and contains both open-source and pro-
prietary projects. The learned quality label corresponds to the consensus of at
least three analysts.

Contribution: Using text-based input, Support Vector Machines outperform
other algorithms including Naive Bayes, BERT, RoBERTa, and CodeBERT by
a large margin. Considering binary classification, they reach the same accuracy as
an average human analyst. They are able to predict the readability, understand-
ability, and complexity of source code with Matthews Correlation Coefficients
(MCC) above 0.61 and F-Scores above 0.81, while a ZeroRule baseline classi-
fier yields an MCC of 0.0 and F-Scores below 0.38. Furthermore, we observe
better performance for binary classification than for ordinal multiclass predic-
tion. While the naive baseline is outperformed by far in the first case, it is only
slightly exceeded in the second case. This observation holds for both text-based
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Fig. 1. First impressionistic, unreadable visualization of source code. The example on
the left shows code that was later on considered hard to maintain, while the example
on the right is rather easy to maintain. The examples feature the classes Cells.java

and UniformTexture.java, resp., from Art Of Illusion [41].

and image-based algorithms. Here, image-based Support Vector Machines yield
the best results as well with MCCs between 0.43 and 0.67 and F-Scores between
0.71 and 0.76.

These results are promising on the one hand, but are not yet applicable in
practice on the other hand. Nevertheless, this preliminary study demonstrates
the potential of image- and text-based classification algorithms for quality predic-
tion and identifies which weaknesses remain to be addressed in further research.
In particular, data preprocessing poses a major challenge.

Outline. The remainder of this paper is organized as follows. First, we describe
in detail the experimental design including the dataset used, machine learning
algorithms implemented, and data preprocessing techniques applied. Second,
the experiment results are presented. This is followed by a critical discussion of
the results and the limitations we identified. Eventually, we synthesize related
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research and alternative approaches to predicting software maintainability. The
last chapter summarizes the study and presents our final conclusions.

2 Experimental Design

In this study, we examine the performance of text-based and image-based
machine learning algorithms to predict the source code attributes readabil-
ity, understandability, and complexity. Readability describes how easy it is for
humans to syntactically parse written information [38]. In contrast, understand-
ability is concerned with the ease of extracting relevant concepts and compre-
hending the semantics of a text or code snippet. Both attributes contribute
significantly to software maintainability [1,47] and are also key characteristics of
natural language texts. Hence, we investigate the use of classification algorithms
from the natural language domain to predict these source code attributes.

Besides, the complexity of code has received lots of attention. The most popu-
lar approaches to capture the human intuition of code complexity are McCabe’s
cyclomatic complexity [30] and the cognitive complexity measure referred to
by SonarQube [4]. While the effectiveness of these metrics is controversial, we
observed human experts are able to build strong intuitions about code complex-
ity even at first glance. This observation was made during the creation of the
dataset described in Sect. 2.1. To recreate that first impression of an expert, we
utilize images of source code. Then, we investigate the use of image classification
to predict the complexity.

This section elaborates on the investigated algorithms, the used dataset,
evaluation metrics, and preprocessing techniques.

2.1 Dataset

Unfortunately, there are only few software quality datasets publicly available. In
1993, Li and Henry [27] published a dataset containing the number of changed
lines per code file. This attribute is often used as a proxy for software main-
tainability, e.g. in prediction experiments by [26,27,51]. However, that dataset
does not distinguish between different maintainability aspects. Hence, there is no
possibility to target specific sub-characteristics such as readability or complexity.

In contrast, we consider a manually labeled dataset that provides expert eval-
uations of the readability, understandability, perceived complexity, modularity,
and overall maintainability of Java classes [40,41].

This dataset is a collection of code snippets from five open-source and four
proprietary projects reviewed and rated by various experts. In total, 70 profes-
sionals participated in the creation of the dataset. The participants are affiliated
with 17 different organizations including Airbus, Audi, BMW, Facebook, and
Oracle. Eventually, the study was able to collect around 2, 000 assessments, cov-
ering 519 Java classes.
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Software quality consists of several sub-aspects such as maintainability or
security [20]. Similarly, maintainability can also be divided into several sub-
aspects. In our case, the assessment focuses on the sub-categories complexity,
modularity, readability, and comprehensibility as well as the overall maintain-
ability judgment of the expert. This decomposition guides the experts which
viewpoints to consider during the assessment and mitigates the threat to con-
struct validity, i.e. different participants might not share the same understanding
of the broad term maintainability. Furthermore, this division enables researchers
to focus on specific sub-aspects such as readability or comprehensibility.

Despite this decomposition into sub-characteristics and limited viewpoints,
the subjective nature of the assessment remains problematic. Therefore, each
class was evaluated by at least three experts. The Expectation-Maximization
algorithm [8] finally aggregates their votes and computes the most probable
‘true’ label for each maintainability category. For more information about the
selection of the study objects and the detailed labeling procedure please refer to
[40] and [41].

In the presented machine learning experiments, we consider the aggregated
consensus rating as the label. For our study, we have access to all open-source
and two proprietary projects. The open-source dataset contains 304 entries, i.e.
Java classes, which are extended to 374 entries by the two commercial projects.
We conduct our experiments on both the open-source and extended versions to
compare if the additional data makes a difference.

The experts labeled each code file on a four-part Likert scale, indicating
whether they fully agree, slightly agree, slightly disagree, or fully disagree the code
fulfills a certain quality attribute. This enables a fine-granular ordinal multiclass
classification. In addition, we also examine a less fine-grained binary classification
setting. Here, we separate the code into supposedly perfect (strongly agree) and
not fully perfect code. Problematically, the dataset is imbalanced: Most code
files are labeled as readable, understandable, and not complex, whereas very few
entries are considered the opposite. This can lead to underrepresented labels
getting only little attention during training and to distorted evaluation results.
For the binary setting, the distribution is less imbalanced. The distributions for
both settings are depicted in Table 1. The values in parentheses denote only the
publicly available data.

2.2 Architectures and Algorithms

There are a plethora of machine learning architectures available. In the following,
we explain the chosen algorithms in detail. Besides the text and image classifica-
tion algorithms described below, we deploy Support Vector Machines (SVM) [5],
which are capable of processing both texts and images.

Text-Based Learning. Naive Bayes [31] is a common classifier for text-
based input. Here, a TF-IDF analysis preprocesses the text and determines how
important specific terms in the analyzed text are. Furthermore, various trans-
former architectures have become prevalent in text-based machine learning use
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Table 1. Distribution of the dataset in both the multiclass (top) and binary case
(bottom). The values in parentheses denote the number of entries from open-source
projects.

Multiclass label Number of data points

Readability Understandability Complexity

Strongly agree 203 (183) 193 (157) 26 (22)

Weakly agree 111 (79) 96 (76) 51 (41)

Weakly disagree 47 (38) 60 (51) 75 (60)

Strongly disagree 13 (4) 25 (20) 222 (181)

Binary label

Supp. perfect code 203 (183) 193 (157) 222 (181)

Other 171 (121) 181 (147) 152 (123)

cases. Hence, we employ BERT [9], CodeBERT [12], and RoBERTa [28] in this
study, too.

While BERT, the Bidirectional Encoder Representations from Transformers,
can suffer from unfortunate random initialization, RoBERTa (Robustly opti-
mized BERT approach) is considered more stable [28]. CodeBERT, in contrast,
was designed specifically to analyze source code and its connection to natural
language [12]. Due to the small size of our dataset, we have resorted to pre-
trained, publicly available models1 and then fine-tuned them to the downstream
task of maintainability prediction. For more information about these models
please refer to [9,12,28].

Image-Based Learning. Convolutional neural networks are known to recog-
nize specific features within images and classify images based on these structures.
Due to external limitations of this study, we could not test all available neural
network and deep learning setups. AlexNet [25] is a reasonable choice here since
it consists of basic layers that integrate well with most machine learning frame-
works. For the configuration of the network, we follow Karpathy et al. [22]. One
challenge for convolutional neural networks, in general, is the need for a large
training dataset.

1 BERT: https://huggingface.co/bert-base-uncased.
RoBERTa: https://huggingface.co/roberta-base.
CodeBERT: https://huggingface.co/microsoft/codebert-base.
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2.3 Training and Evaluation

Since the dataset is quite small, we dedicate 80% of the data for training and
20% for testing. This is a trade-off to accommodate both needs – a large enough
training part for the training-intensive architectures, as well as a large enough
testing part for evaluating and comparing the approaches. Using stratified splits
accounts for equal label distributions in both partitions, thus mitigating the
effects of the imbalanced label distribution. In contrast to related work [42], we
shuffled the dataset before splitting and did not consider project boundaries.

During training, we applied grid-search cross-validation to identify the best
performing hyper-parameters and internal preprocessing options. For the text-
based approaches, we examined e.g. the use of stemming, camelCase splitting,
and the number of tokens to be respected in n-grams. For the SVM architectures,
we varied their internal kernels, namely Polynomial, Sigmoid and Radial Basis
kernels.

Metrics to evaluate machine learning models are based on different perspec-
tives on the confusion matrix. For multiclass classification, there are two ways
to calculate performance scores: In macro-aggregation, the respective metric
is applied to each class separately and aggregated afterward. Aggregating all
classes before calculating the respective metrics is called micro-aggregation. In
this study, we use micro-aggregation. In this case, F-Score, precision, recall, and
accuracy yield identical values when evaluating multiclass predictions. For the
remainder of this paper, we will thus only use F-Score to refer to this value. Due
to the imbalance of the dataset, we consider the Matthews Correlation Coefficient
(MCC) [14] as well. Its use is common and suggested in the defect prediction
domain, where imbalanced data distributions are commonly observed [50]. The
MCC measures the alignment of two raters while considering agreement might
happen by chance. In our context, we consider the learned model the first rater,
and the ground truth as the output of a second rater. A value equal to zero
indicates random alignment, while a value of 1 indicates perfect alignment and
a value of −1 corresponds to perfect inverse alignment.

To put the performance of all learned models into context, we establish two
baselines. A naive ZeroRule classifier identifies the most common label in the
training set and always predicts this label. Due to its constant nature, the MCC
of this classifier is 0. Comparing the ratings of the individual human experts
to the eventual consensus vote, we find frequent deviations between them. In
fact, the average expert is only aligned with the consensus in approx. 63–70%
of the cases, depending on the considered quality attribute. This human-level
performance provides an illustrative, second baseline.

Both baselines are summarized in Table 2. For readability reasons, the table
is restricted to performances on the extended dataset only. Please note the per-
formance of the ZeroRule classifier depends on the data distribution. In our case,
its values are identical for the binary and multiclass settings. This is because the
most common class in the multiclass analysis is identical with the supposedly
perfect code in the binary setting.
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Table 2. Baselines for multi-class prediction and binary prediction

Multiclass baselines Readability Understand. Complexity

MCC F-Score MCC F-Score MCC F-Score

Average expert 0.451 0.658 0.440 0.633 0.511 0.703

ZeroRule classifier 0.000 0.543 0.000 0.516 0.000 0.594

Binary baselines

Average expert 0.613 0.797 0.621 0.804 0.581 0.940

ZeroRule classifier 0.000 0.543 0.000 0.516 0.000 0.594

2.4 Preprocessing for Text-Based Prediction

Before we can use the labeled code files for machine learning, we have to prepro-
cess them. For the text-based analysis, the code files are parsed as raw text and
then tokenized. For the transformer models, we use their integrated tokenizers.
As such, the BERT model comes with its own tokenizer, as do the RoBERTa and
CodeBERT models. Since these transformer architectures only accept inputs of
a length shorter than 512 tokens, we have to split the file into multiple parts and
treat each part as a distinct data point if it originally contains more tokens [45].
Thus, the dataset size increases. Notably, the labels in our dataset have been
assigned to the whole Java class. After splitting the code, we assign the original
label to all its parts.

In contrast, for Naive Bayes and text-based SVM we could use the com-
plete files. The necessary features are produced by a Term Frequency – Inverse
Document Frequency (TF-IDF) analysis of the code file.

2.5 Preprocessing for Image-Based Prediction

For the image-based analysis, we transform the code files into syntax-highlighted
images. We decided to add syntax-highlighting to i) ease the identification of rel-
evant structures and ii) mimic an analyst opening the file in a code editor. The
same color theme is used for all images. First, we transform the Java files to
PDF files using PDFCode2. Second, these files are converted into PNG files of
680 × 680 pixels. This size ensures the color from the syntax-highlighting is still
visible although single characters might be no longer readable, depending on the
length of the code. Due to resource constraints, our implementation of AlexNet
downsizes the images to 224×224 pixels similar to the original AlexNet [25]. Our
experiments with higher resolution images have not led to significant improve-
ments.

The code is positioned in the top center of each image. An example is provided
in Fig. 2. There, the code is unreadable by design.

2 https://github.com/xincoder/PDFCode.
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Fig. 2. Image of syntax-highlighted source code from UniformTexture.java from Art

Of Illusion [41]

2.6 Experiment Execution

AlexNet is implemented on top of Keras [6], while BERT and its derivatives use
PyTorch [11]. Naive Bayes and SVMs are based on scikit-learn [34].

We conducted every experiment using the extended dataset and using only
the open-source data. This allows for analyzing the effect of additional data
points and increases the reproducibility of our results for those without access
to the confidential data. A replication package is publicly available on GitHub3.

Every experiment was executed with different random seeds to mitigate the
effects of random bias. We limited ourselves to two seeds as we did not find large
differences between the runs. The reported values correspond to the average.

3 https://github.com/simonzachau/SWQD-predict-software-maintainability.
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3 Experiment Results

Table 3. Prediction results on the extended dataset and performance obtained on the
open-source data in parentheses.

Multiclass classifier Readability Understandability Complexity

MCC F-Score MCC F-Score MCC F-Score

Naive Bayes 0.196 (0.038) 0.587 (0.607) 0.136 (0.112) 0.540 (0.533) 0.000 (0.000) 0.600 (0.590)

SVM (text-based) 0.358 (0.398) 0.640 (0.705) 0.332 (0.301) 0.613 (0.598) 0.284 (0.241) 0.633 (0.623)

BERT 0.032 (0.017) 0.306 (0.316) 0.023 (0.017) 0.276 (0.273) 0.005 (−0.038) 0.259 (0.232)

RoBERTa 0.013 (0.001) 0.290 (0.314) 0.010 (−0.001) 0.280 (0.262) −0.013 (0.021) 0.240 (0.271)

CodeBERT −0.009 (0.027) 0.274 (0.327) 0.004 (0.042) 0.263 (0.295) −0.012 (0.021) 0.234 (0.269)

SVM (image-based) 0.232 (0.470) 0.580 (0.713) 0.302 (0.427) 0.580 (0.631) 0.402 (0.337) 0.673 (0.615)

AlexNet 0.000 (0.000) 0.293 (0.607) 0.000 (0.000) 0.113 (0.205) 0.000 (0.000) 0.600 (0.164)

Binary classifier

Naive Bayes 0.555 (0.538) 0.780 (0.779) 0.521 (0.695) 0.760 (0.844) 0.464 (0.478) 0.747 (0.746)

SVM (text-based) 0.609 (0.554) 0.807 (0.787) 0.660 (0.657) 0.827 (0.820) 0.637 (0.523) 0.827 (0.771)

BERT −0.013 (−0.042) 0.629 (0.568) −0.029 (0.031) 0.646 (0.656) 0.027 (0.005) 0.585 (0.574)

RoBERTa −0.001 (−0.017) 0.613 (0.600) 0.026 (0.035) 0.674 (0.697) −0.050 (−0.015) 0.615 (0.608)

CodeBERT 0.028 (0.016) 0.627 (0.602) 0.036 (−0.002) 0.680 (0.646) 0.018 (0.032) 0.653 (0.645)

SVM (image-based) 0.513 (0.565) 0.760 (0.795) 0.430 (0.530) 0.713 (0.762) 0.667 (0.495) 0.840 (0.754)

AlexNet 0.000 (0.000) 0.453 (0.500) 0.006 (0.000) 0.500 (0.500) 0.000 (0.000) 0.400 (0.590)

For each classification approach, we investigate both the performance in a multi-
class setting and a binary setting. The latter provides a first impression about the
quality of the source code, while the multiclass prediction is more fine-grained.
Table 3 lists the results concerning MCC and F-Score for each predicted quality
attribute. The values in parentheses refer to the performance obtained using
only the open-source data. The table shows the results for multiclass prediction
in the top part, while the bottom part displays the results obtained for binary
classification. Here, we combined three classes of the multiclass setting into one
class as described in Sect. 2.1. To ease a comparison with the multiclass perfor-
mance, we use F-Score and MCC to evaluate the binary prediction, too. Please
note the micro-averaged F-Score yields the same value as the micro-averaged
accuracy, precision, and recall scores.

3.1 Text-Based Classification

We find text-based SVMs outperform all other text-based approaches concern-
ing MCC and F-Score independently of the predicted quality attribute. In the
multiclass case, readability can be predicted with an MCC of 0.36 and F-Score
of 0.64; understandability with an MCC of 0.33 and F-Score of 0.61; and com-
plexity with an MCC of 0.28 and F-Score of 0.63. For binary predictions, an
MCC of 0.61 and F-Score of 0.81 is reported for readability; 0.66 and 0.83 for
understandability; and 0.64 and 0.83 for complexity.
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The second-best classifier is Naive Bayes. It delivers the second-best results
for readability and understandability. However, for the complexity label, its
results are identical to the constant ZeroRule classifier. Notably, BERT,
RoBERTa, and CodeBERT perform worse than the naive baseline classifier
regarding the F-Score. Their MCC is close to 0 in all experiments, thus indi-
cating only little information was learned during training.

In the binary setting, text-based SVMs outperform other text classification
approaches as well. However, the difference to Naive Bayes is much smaller com-
pared to the multiclass prediction. The obtained performance values are notably
higher than in multiclass settings. The MCC is at 0.61, 0.66, and 0.64, resp.

3.2 Image-Based Classification

SVMs appear superior for image-based classification as well. AlexNet yields an
MCC of 0 in all experiments, indicating the algorithm was not able to learn
any relevant information and performed only as well as the constant classi-
fier. Notably, its F-Score in the multiclass setting is even below the baseline
for readability and understandability. In the binary case, AlexNet achieved F-
Scores slightly above the baseline while the MCC remains at 0. In contrast, SVM
obtained an MCC of 0.51 and F-Score of 0.76 for readability, 0.43 and 0.71, resp.,
for understandability, and 0.67 and 0.84 for complexity.

3.3 Interpretation

For an easier comparison of the seven approaches, we visualize the MCC obtained
on the extended dataset in Fig. 3 (multiclass classification) and Fig. 4 (binary
classification).

In our experiments, we found Naive Bayes and SVMs to perform better
than convolutional neural networks and transformers. Further, we observe binary
classification yields better results than multiclass prediction. On the extended
dataset, the text-based approaches tend to perform better when predicting read-
ability and understandability while the image-based approaches predict complex-
ity more accurately. This is in line with our hypotheses.

Naive Bayes and SVMs perform better than expected, whereas AlexNet and
the transformer approaches are below expectations. The SVM can play to its
strengths of performing well on small datasets. At the same time, the small size of
the dataset, as well as its imbalance, are likely to be the problem for convolutional
neural networks and transformer architectures. Another evidence for this is that
the interpretation of the dataset as binary classes almost exclusively achieved
higher scores than in the multiclass scenario.
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Fig. 3. Comparison of the MCC for multiclass classification
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Fig. 4. Comparison of the MCC for binary classification
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The transformer models BERT, RoBERTa, and CodeBERT achieve similar
results in all experiments. However, the obtained MCC is close to 0. Thus, these
models can be compared to randomly selecting a label. Still, all possible labels
have been predicted at least once in our experiments.

Analyzing the predicted classes, we found some algorithms did not predict
certain labels at all. For instance, Naive Bayes did only predict one out of four
possible labels for complexity, and only two out of four labels for readability in
the multiclass setting. In the binary interpretation, all labels are predicted at
least once, which leads to higher scores. In our tests with AlexNet, always only
one class is predicted in every experiment. This holds across both multiclass and
binary prediction as well as across the extended and the open-source dataset.
This renders the numbers unusable to compare to other approaches.

4 Discussion

The results are promising on the one hand, but also demonstrate room for
improvement on the other hand. As of now, we observe large deviations in the
ordinal multiclass prediction between the performance of the trained models and
human performance. While the ZeroRule baseline is only slightly exceeded in this
setting, it is outperformed by far in the binary setting. It is encouraging to see the
performance of the text- and image-based SVM model even reaches the perfor-
mance of an average human expert concerning the MCC. However, this binary
setting probably oversimplifies a complex problem. Still, these results provide
evidence on the potential of applying text and image classification algorithms to
predict software quality.

The extended dataset contributes 70 additional data points. However, we
cannot confirm that more available data leads to better results in general. For
instance, text-based SVM yielded a higher MCC and higher F-Score predicting
multiclass readability on the smaller dataset. The same observation is made
using the image-based SVM to predict readability or understandability. Still, in
most cases, better performance was observed using the extended dataset.

So far, we are not aware of other studies using image-based classification
on source code. A summary of related work is presented in Sect. 5. Due to the
recentness of the dataset we used, only few comparable experiments are avail-
able. The most comparable experiment is described in [42]. The authors focused
on the overall maintainability judgment of the code instead of single quality
attributes like readability or understandability. Their models are based on static
code metrics. Besides, they apply a different validation technique respecting
project boundaries, while we shuffled the dataset before splitting it. Thus, the
experiment settings are too different to reasonably compare the results.

We found preprocessing to be an extensive challenge for both image-based
and text-based inputs. Most image-based machine learning architectures require
an input of quadratic and constant size. Source code neither has a defined length
nor a quadratic layout. We chose an image size of 680×680 pixels, which is a rea-
sonable trade-off between the high number of dimensions and the training time.
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Another challenge is the layout of the image. Either the code is displayed as large
as possible, or with normalized font size. We decided not to normalize due to
large discrepancies in the length of the code files. The longest file in this dataset
is 28 pages long (ISO A4 format). Had we chosen to scale the size according
to this maximum value, the majority of the images would have appeared com-
pletely void. Since the algorithms try to recognize structural patterns, we chose
to display these structures as prominently, i.e. large, as possible.

In the text-based experiments, the hyper-parameters about stemming and
camelCase splitting did not lead to significant differences in the performance of
the SVM and Naive Bayes classifiers.

In this experiment, BERT and its derivatives could not predict any quality
attribute reliably. We attribute the poor performance of the transformer models
mainly to one characteristic: the limited input length. As they accept only input
smaller or equal to 512 tokens, we had to split most code files. This is a problem
if the quality defects leading to a bad quality judgment are not evenly distributed
across a Java class, which is a reasonable assumption. If the use of text-based
machine learning for quality evaluation is to be moved forward, quality labels on
the granularity of smaller code snippets are needed. However, manually labeling
a sufficient amount of data points was out of scope for this study.

For image-based approaches, AlexNet always predicted one class and
neglected all others. Contrary to expectations, that one class varied between
experiment runs and was not always the majority class. Oftentimes, such behav-
ior indicates a bug. To validate our setup, we replaced the images of one class
with black dummy images to contrast the otherwise predominantly white images.
In that experiment, the prediction achieved a perfect result (MCC = 1). This
confirms the correctness of the implementation. We also conducted experiments
using AlexNet with larger input images. However, it did not yield a noticeable
difference. We hypothesize that the content of the images looks too similar for
the convolutional neural network to identify useful characteristics.

4.1 Threats to Validity

The biggest threats to validity are introduced by the selected algorithms and used
dataset. Though it is manually labeled and believed to contain the consensus
of expert assessments, the dataset contains only a relatively small number of
samples. Still, it is significantly larger than other, commonly used datasets such
as the Li-Henry dataset [27]. However, the construct validity of manually labeled
datasets is inherently threatened. Especially regarding software quality, which
is deliberately defined vaguely [20,21], there exist several different viewpoints.
We mitigated this threat by—instead of referring to the broad term software
quality or maintainability—asking for evaluations with respect to more precise
sub-attributes. In addition, the labeling platform offers explanations of the single
attributes as tooltips. However, we recognize that participants may still interpret
these terms differently.

As mentioned earlier, a large amount of machine learning algorithms exists.
We made sure to include both simple (Naive Bayes and SVMs) and more
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sophisticated models such as transformers and neural networks. We acknowl-
edge using more or different approaches may have led to different results. Due
to the limitations of this study and the long training periods required by most
approaches, we had to limit ourselves to a subset of all applicable algorithms. To
mitigate the potential effects of random seeds, we performed each experiment
twice and report the average. Though we did not find significant deviations
between the runs, one could repeat the experiment several times more. Another
threat is the bias introduced by the chosen train-test split, which we mitigated
by shuffling and stratifying the data. While we are going to further improve
these weaknesses in future experiments, we see value in this preliminary study
and its results. To increase the reproducibility of our results, we report the per-
formance of our classifiers on the publicly available dataset in Sect. 3 and provide
a replication package.

4.2 Future Work

There are various ways of how to further improve our results and setup. Even
the extended version of the used dataset is small compared to those typically
used for image- or text-based learning. A larger and more balanced dataset can
likely improve results for most of our approaches. The dataset at hand also
admits a numerical interpretation of the labels. Hence, modeling the prediction
as a regression model is an interesting possibility. In the future, we plan to
analyze other machine learning architectures and incorporate techniques from
Explainable Artificial Intelligence to foster the debugging and interpretation of
the results.

5 Related Work

Automated software quality evaluation and control is an increasingly important
topic. Lately, machine learning has been used to evaluate characteristics that
typically need to be interpreted by human experts. This includes, e.g., main-
tainability prediction [17,27,43] or code smell detection [13,33]. An overview of
machine learning techniques for code smell detection is provided in [10].

Text-based models for code have been utilized by Palomba et al. [32] to
identify code smells based on textual analysis. Salem and Banescu [39] used
the TF-IDF of source code to foster metadata recovery attacks on obfuscated
source code. Corazza et al. [7] performed a study where they manually analyzed
code comments and predicted human ratings using TF-IDF as well. Buse and
Weimer [2,3] developed a metric for code readability based on entropy within the
code. Their model was later refined by Posnett et al. [36]. While they do predict
the readability of code, they use static measurements as features. In contrast,
we use textual or image representations of the code.

To predict software maintainability, several related studies use a dataset pub-
lished by Li and Henry [27], which refers to the number of changed lines as a
proxy for maintainability. The data is drawn from only two software systems,
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which are programmed in Classic-ADA. Then, regression models are used to pre-
dict the number of changed lines [27]. Kaur and Kaur [23] summarize 27 exper-
iments using this dataset. Furthermore, neuro-genetic algorithms were used by
Kumar et al. [26], while van Koten and Gray applied Bayesian Networks [46].

Similar to these studies, Malhotra and Lata [29] use the observed changes
in software systems as their target variable. Then, they discretize the data into
binary classes corresponding to high and low maintainability. However, they do
not provide the threshold used to separate them and mostly focus on the effects
of data preprocessing techniques.

Another dataset for C programs was created in 1987 by Harrison and
Cook [15]. This dataset is used for example by Xing et al. [49], who trained
support vector machines on it, or by Khoshgoftaar et al. [24], who used regres-
sion models.

Other studies aim to predict the rating of human experts instead of code
changes. Using the same dataset as in our study, the maintainability of code was
predicted in [42]. Here, the authors employ a human-level baseline as well to
put the performance of the evaluated machine learning classifiers into context.
However, static code metrics are used as input and a different aspect of the
dataset was chosen as the label. Hegedűs et al. [17] predicted the perceived
changeability of methods using a three-fold label. They achieved an accuracy of
0.76, while the constant baseline classifier already yielded an accuracy of 0.67.
On class-level, Schnappinger et al. [43] achieved an accuracy of 0.81, using a
three-fold scale, too. Hayes and Zhao [16] used the perceived maintainability of
software developed by students and developed a regression model to predict the
judgment.

So far, we observe studies relying on human evaluations often do not report
which maintainability sub-aspects the experts focused on [16,35,43], do not share
their data publicly [43], or rely on the opinion of a single expert [16,18,35].

In this study, we target three fine-granular sub-dimensions of maintainability
and evaluate classification techniques chosen specifically for these attributes.
We explore the use of image and text classification algorithms to predict the
readability, understandability, and complexity of source code.

6 Conclusion

Current machine learning approaches for predicting expert software qual-
ity evaluations often base their prediction on static code metrics. In related
domains, image and text classification reached significant results as well, sug-
gesting their potential use in quality prediction. In this study, we investi-
gate how well text-based and image-based classification algorithms can predict
readability, understandability, and complexity of code. We compare five text-
based machine learning architectures (Naive Bayes, Support Vector Machines,
BERT, RoBERTa, CodeBERT) and two image-based classifiers (Support Vector
Machines, AlexNet). The labels are drawn from a publicly available, manually
labeled dataset. We examine both a fine-granular ordinal multiclass classification
and binary classification settings.

PREPRINT − full version at https://doi.org/10.1007/978−3−031−04115−0_4



Using Text and Image-Based Learning to Predict Maintainability 57

Using text-based input, Support Vector Machines outperform other algo-
rithms by a large margin. In the binary classification setting, they are able to
predict the readability, understandability, and complexity of source code with
Matthews Correlation Coefficients above 0.61 and F-Scores above 0.81. Regard-
ing image-based classification, Support Vector Machines yield the best results
as well with F-Scores between 0.71 and 0.76. Although the employed models
outperform a ZeroRule baseline classifier, the multiclass prediction does not yet
reach an operational level. In contrast, in a simplified binary setting, our models
reach human-level results. This demonstrates the potential of image and text
classification algorithms.

However, in this preliminary study, we identified several open challenges for
future research: In our view, the main challenge for the applicability of these
approaches is currently posed by their need for fixed-size inputs. Indeed, state-of-
the-art transformer models require text samples of fixed length. Similarly, most
image-based algorithms assume a constant image size. This requires a prepro-
cessing of source code files of unbounded length and arbitrarily complex struc-
ture into fixed-size data points, which in our experiments caused a deterioration
of data quality. In particular, the partitioning of source code into fixed-length
strings or fixed-size images did not match the granularity of the available labels.

This preliminary study opens an interesting line of research in quality pre-
diction. As this was our first foray into using text- and image-based machine
learning for software quality prediction, we are confident that subsequent work
will improve on the identified limitations.
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towards a machine learning-based approach. In: 2013 IEEE International Con-
ference on Software Maintenance, pp. 396–399. IEEE (2013)

14. Gorodkin, J.: Comparing two k-category assignments by a k-category correlation
coefficient. Comput. Biol. Chem. 28, 367–374 (2004)

15. Harrison, W., Cook, C.: A micro/macro measure of software complexity. J. Syst.
Softw. 7(3), 213–219 (1987)

16. Hayes, J.H., Zhao, L.: Maintainability prediction: a regression analysis of measures
of evolving systems. In: 21st IEEE International Conference on Software Mainte-
nance (ICSM 2005), pp. 601–604. IEEE (2005)
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