Benchmarking ongoing development output
in real-life software projects

Jonathan Streit[0009-0006=8129-3184] 51 Tukas Feye

itestra GmbH, Destouchesstr. 68, 80796 Munich, Germany
streit@itestra.de

Abstract. In this case study we compare six different metrics and their
suitability for productivity benchmarking on development output level.
We use detailed data from four software industry projects performed
by one company with overall 264 months of development and 1.1 mil-
lion source lines of code. Code change, absolute growth and number of
commits as well as invested effort are measured in consecutive 3-month
periods. This allows us to observe alterations in productivity through-
out the course of a project as well as inter-project comparisons. We find
correlations between effort and the chosen output metrics as well as sig-
nificant and explainable productivity differences between projects and
project phases.

We also analyze whether the use of a clone detection algorithm can im-
prove measurement by adjusting for copy & paste additions and renamed
or moved code, and find that a small benefit exists. The redundancy-
adjusted amount of code tokens added or modified seems to be the best
metric among the selected, in particular in ongoing development where
an already existing codebase is changed. Number of commits and abso-
lute growth may complement the picture.

Keywords: Metrics - Productivity - Empiric Case Study

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

1 Introduction

Being able to measure and benchmark software development output and in con-
sequence productivity is crucial for both project-internal steering as well as for
management of an I'T organization. However, it is also a difficult task for which
the single silver bullet metric does not exist [10]. Beck describes in [4] the four lev-
els of effort, output, outcome and impact on which measurement can take place’.
While it seems desirable to measure “high level” aspects such as economic value
of a feature, this is at the same time impracticable for many applications due

! with outcome describing the value for the customer and impact the value that flows
back to the IT organization

2 J. Streit and L. Feye

to the required measurement effort, the longer feedback cycle and the numerous
factors outside the IT organization that can influence the result. We therefore
believe that output measures, such as code size-related metrics, will remain an
important tool.

In order to evaluate productivity beyond relative comparisons, a benchmark
scale is required. Such an absolute scale allows to asses the status of a project
or development team and to estimate the potential of improvement actions. We
do this in our consulting projects, so-called software HealthChecks [19], where
modernisation and optimization strategies are developed including ROI esti-
mates. Benchmarks can also be helpful when a project starts and historic data
is not yet available for comparison.

In this case study we analyze the suitability of different output metrics for
productivity benchmarking using four real-world industry projects. Main contri-
butions compared to the state of research are:

1. We perform a fine-grained analysis of real-world software industry projects,
including data on invested effort. Existing research often uses aggregated
total values or open source projects, for which no effort data exists.

2. We compare metrics for their suitability to measure change within an exist-
ing codebase. Working on an existing system is the predominant situation in
practice. Popular metrics and data in benchmark collections are however of-
ten limited to sizing absolute amounts of software that have been constructed
(from scratch) for a certain amount of money or effort.

3. We analyze whether the use of a clone detection algorithm to account for
duplicated, renamed or moved code can improve measurements.

2 Background and related work

Productivity measurement. Both practitioners and researchers have worked
on productivity metrics for decades. Beck [4] and Forsgren [10] discuss different
levels on which output and productivity measurement may take place. According
to Oliveira [17], lines of code per effort or cost and function points per effort or
cost are the most frequently used in research. Lines of code are easy and cheap to
measure, but at the same time criticized for being potentially misleading [2]. Due
to their popularity in practice, we will focus this case study on code-based metrics
such as changed lines of code. Function points aim to abstract from concrete
implementation technologies. They were initially designed for manual counting
during effort estimation (i.e. before code is available). In the context of agile
projects, “velocity” metrics such as story points [5] have gained popularity, but
they can only be used for a relative, project-internal comparison as no absolute
benchmark scale exists and each team has their own notion of how much effort
and/or result a story point represents.

Measuring code change. Lines of code, function points and many other
metrics are in the first instance measures for absolute size, not for code change.
Explicit change measures, also called “code-churn” metrics, have been used in-
tensely in research for defect density prediction and, building on top of that,

Benchmarking ongoing development output in real-life software projects 3

prioritization of test cases and review efforts. Usually the number of added or
modified lines in a module or the number of commits is used, e.g. in [16] and [21].
Some works in the area of software evolution such as [8] also use change mea-
sures for correlations with quality metrics. Fewer works have analyzed explicitly
code change in the context of development output and productivity measure-
ment. Kocaguneli [14] researches the relation between code churn and developer
assignment and finds that the planned work distribution between the developers
is not reflected by the actual distribution of code change. Ramil and Lehman [9]
analyze code change metrics on different levels of granularity as effort predictors.

Industry data. While measurement of productivity has been an intensely
discussed topic in both academia and industry for many years, there are only few
works that provide fine-grained analyses of industry projects and actual effort
data. [22] is such an example, analyzing output and effort for six builds of one
project. There is no description in the paper how exactly the change from one
build to the next is measured, or whether only the absolute growth is counted.
Kocaguneli [14] analyzes several industry projects, but does not consider effort
data. Ramil and Lehman [9] report on an industrial mainframe software, but the
effort data used is only derived from change log entries.

Benchmark collections such as in [11, 1] provide productivity values for a
variety of domains, technologies etc. but only as aggregated total values, without
insights on the course of the projects or further characteristics. Barb [3] uses
data from [1] to analyze, amongst others, whether lines of code can predict
invested effort and concludes that no. We however argue that productivity varies
significantly between projects and thus a linear relation between lines of code
and effort across projects cannot necessarily be expected.

Redundancy-free size measurement. Mas and Pizka [18] have suggested
to use clone detection in order to improve shortcomings of pure lines of code
measurements and established the Redundancy-Free SLoC metric.

3 Methodology and data

For our study, we formulate the following research questions:

— RQ1 Can code change related metrics provide insights on development pro-
ductivity?

— RQ2 Which of the metrics is most suitable for productivity benchmarking?

— RQ3 Can the use of clone detection improve measurements?

3.1 Metrics
We use six metrics to measure development output during a given time period:

— Changed LoC. The number of lines added or modified in the diff [15] between
the code version at the beginning of the time period and the version at the
end of the time period. Deleted lines, changes in whitespace and empty lines
are not counted. Changes in comment lines are included in this metric.

4 J. Streit and L. Feye

— RFCC. The Redundancy-Free Code Churn metric (RFCC) has been devel-
oped at our company itestra and used for around 15 years. It measures the
amount of code added or modified between the code version at the beginning
of the time period and the version at the end of the time period, adjusted for
code that has just been moved around or duplicated. A clone detection algo-
rithm is used to identify such parts. Details of the algorithm are presented in
the next section. In order to be independent from the formatting style, this
measurement is based upon source code tokens rather than physical lines.
Comments and import/using-Statements are not counted.

— CC (Code Churn). In order to judge the impact of the redundancy-adjustment
of RFCC, this helper metric is calculated with exactly the same algorithm
as RFCC but without the clone detection and adjustment part.

— RFSLoC absolute growth. The Redundancy-Free SLoC metric as defined in
[18] measures the size of a codebase in source lines relieved of redundancies
from code cloning. RFSLoC absolute growth is defined as the redundancy-
free size at the end of the time period minus the redundancy-free-size at the
beginning. Note that, differing from the above metrics, this sums up added
and deleted lines and may yield negative results when large amounts of code
were deleted. The tool ConQAT [7,13] is used for the analysis. Comments
and import/using-Statements are not counted, nor are modified lines.

— SLoC absolute growth is defined as the number of code lines at the end
of the time period minus the number of code lines at the beginning. The
counting is performed analogously to the RFSLoC metric, i.e. comments
and import/using-Statements are not counted.

— Commits. The number of commits in the version control system during the
time period. Different from the other five, this metric is not related to the
actual program code.

From each output metric a corresponding productivity metric can be calcu-
lated by dividing the output by the effort invested in the same time period.

Test code, generated code and source code of 3rd party libraries are excluded
manually from the code base before measurement.

3.2 The RFCC algorithm
The RFCC calculation is performed as follows:

1. For each file in the codebase, both the code version at the beginning of the
time period and the version at the end of the time period are transformed
into token sequences using the lexer from ConQAT [7,13]. Files that are
present in only one of the versions are treated as empty in the other.

2. Comments and import/using-Statements are filtered out.

3. The diff [15] between the two token sequences is calculated for each file.
Deletions are discarded, i.e. we keep added and modified tokens (the latter
are represented as an addition and a deletion in the diff output).

Benchmarking ongoing development output in real-life software projects 5

Clone detection is performed on the union of all token sequences from the
beginning of the time period and the diff results. The ConQAT framework
and its clone detection component are used as a base for the implementa-
tion. Clones are required to have a minimum length of 50 tokens. Sequences
differing only in literal values are still recognized as clones.

Tokens from the diff that appear in any clone also spanning a part of the
code version at the beginning of the time period are marked as not to be
counted in step (7). This has the effect that code that was moved to another
location is not counted. The rationale is that moving code or renaming a
package or module is a simple operation that would appear as an unjustified
large change in a naive diff.

Tokens from the diff that appear in clones only spanning the diff part are
counted with % in step (7) with n being the number of clone instances. This
has the effect that code that was added multiple times is counted exactly
once, similar as in RFSLoC [18]. The rationale is that code clones are consid-
ered an anti-pattern regarding maintainability and that adding redundant
code several times does not increase functionality n-fold.

As a last step, the tokens from the diff are counted. The result is transformed
back into a lines of code-like scale by dividing through 4.6 as an average
number of tokens per source line for Java and alike.

3.3 Projects in the study

Four software projects performed by the company itestra for clients in the finan-
cial domain between 2015 and 2023 were analyzed for this study. All projects
dealt with individually developed business information systems and used Java
or C# as their main programming language. Only projects with a duration of
several years were selected.

Project A created an integrated insurance system and spans two phases. Dur-
ing the development phase which lasted approximately 3% years, the system
was constructed using both a legacy system and additional requirements as
specification. The code was put in production incrementally. In the follow-
ing maintenance phase functional changes, enhancements and maintenance
tasks were performed.

Project B migrated a payroll backend system from COBOL to C#, preserv-
ing the functionality and exact result but with a completely new technical
design. Testing intensified in the second half of the project and there was
only one “go live” date towards the end.

Project C used an existing integrated insurance system as a starting point
and adapted and extended it for a new customer.

Project D developed a system that simulates an outdated insurance system
to maintain data legally mandated to be retained. The project subdivides
into a development and a subsequent extension and maintenance phase.

Effort data was extracted from time bookings in itestra’s ERP system and

comprises the whole development team and activities including design, coding,

6 J. Streit and L. Feye

developer testing, bugfixing, meetings and itestra-side project management. It
does not include acceptance testing, requirements specification and customer-
side project management. Effort is in person days (8h) unless noted otherwise.
Code versions for the selected points in time were obtained from the main de-
velopment branch of the version control system for each project.

The overall observation periods used for the study were chosen as large as
possible, starting after project initialization? and ending e.g. when the customer
took over in maintenance and thus a complete retrieval of effort data was not
possible any more. Table 1 provides some key figures on the size of the projects.

Table 1. Project overview. Code size is measured in SLoC. Legacy systems serving as
reference are not included in the code size.

Code size|Code size| Months Total Total

at start” | at end |duration|person days|commits
A 66,248 398,236 96 6,559 62,476
B 13,833| 397,917 42 4,912| 23,195
C| 268,685 349,530 60 4,004| 22,848
D| 14,531 55,342 66 1,084 4,218

3.4 Evaluation methods

As we are particularly interested in measuring ongoing software development, i.e.
work in an existing code base, we subdivide each project into consecutive time
periods of constant length. We can thus observe both alterations throughout the
course of a project and inter-project differences. We expect from a meaningful
output metric that

— it should correlate with the invested effort within the scope of one project
and homogeneous project phase, i.e. productivity should not vary strongly.

— it should yield differences in values for different projects and different project
phases that can be explained by the context.

— it should not be prone to systematic errors or easy to manipulate.

— it should have an understandable interrelation with the output of software
development, i.e. implementing or changing features of a software system.

We will thus for the evaluation of RQ1 and RQ2

— calculate correlation coefficients and their statistical significance for all pairs
of an output metric and the effort invested in this time period for each project
separately. Suitable metrics should have a high correlation with effort within
a project phase.

— calculate the mean productivity values for each project phase and metric as
well as their variance resp. standard error.

2 Projects A, B and D do not start at zero due to sample and prototype code that
was created before the actual project start.

Benchmarking ongoing development output in real-life software projects 7

— compare mean productivity values between projects and project phases and
analyze the statistical significance of the differences using a 2-sided t-test.
Suitable metrics should show some (explainable) variation between projects
and project phases.

— analyze possibilities of systematic errors and manipulations.

Besides, repeatable and objective results as well as low measurement effort
are desirable, which all metrics used here fulfill as they are automated measures.

Note that we aim to measure development output, not business value, and
thus do not attempt to relate metric results to any sizing on business level.

For RQ3 we will compare the above results for RFCC vs. CC and RFSLoC
absolute growth vs. SLoC absolute growth. Additionally we will analyze a sample
of changes on code level for time periods where RFCC and CC deviate.

3.5 Division into time periods

Overall observation time for each project was split into consecutive time periods
of 3 months. We chose this length as it is on one hand small enough to gener-
ate a sufficient number of data points and on the other hand large enough to
equalize effects like daily variation, people working locally for a few days before
committing, corrections of a recent check-in etc.

4 Results

Figure 1 displays the different output metrics as well as the invested effort
throughout the course of the four projects. Each data point represents a con-
secutive 3-month period. In order to keep the diagram readable, CC and SLoC
absolute growth have been omitted from this and other figures.

Figure 2 shows the Spearman correlation coefficients for the correlation be-
tween each output metric and effort for each of the projects. The correlation is
statistically significant except for RFSLoC absolute growth and SLoC' absolute
growth in project C which is plausible as the project includes periods when large
amounts of code, representing functionality from the imported system that was
not needed by this customer, were removed from the codebase and thus the
absolute growth was low or even negative. Correlation coefficients—except for
the two data points in project C—range from 0.67 to 0.88. On average they are
highest for Commits, then RFCC followed closely by Changed LoC and CC and
lowest for RESLoC absolute growth and SLoC absolute growth. We would have
expected the last two metrics, which only take into account absolute growth,
to show little correlation with effort during maintenance/bugfixing, but in the
maintenance phase of A and the second half of B the correlation is also signifi-
cant.

Figures 3 to 6 show the mean productivity values for each metric for the dif-
ferent projects and project phases and table 2 displays t-test results for selected
pairs.

8 J. Streit and L. Feye

In project A, we can see a strong and statistically significant drop in RFCC
per person day from the development phase to the maintenance phase (similar
for the other code-based metrics), while at the same time Commits per person
day increase slightly. This could be explained by different characteristics of the
project work, i.e. smaller changes with higher analysis and communication effort.
Productivity could however also have been influenced by changes in the team
structure: during the development phase only six developers contributed more
than 90% of the commits, at least two of them seniors. In the following 3%
years the same share of commits was spread over 17 developers and only two of
them had participated significantly in the development phase, indicating a loss
of trained team members.

There is also a statistically significant drop in RFCC per person day (and
similarly for the other code-based metrics) in project B when comparing the
first and the second half of the project while Commits per person day remains
constant. This could be explained by the fact that testing and thus also bugfixing
was performed mostly in the second half, causing more commits with only few
lines changed.

Table 2. t-test results for mean productivity value comparison between projects and
project phases. See section 3.3 for an explanation of the project phases.

p-values for|vs. RFCC p. PD|Commits p. PD
A dev A maint. 0.01 0.95
B first half |B second half 0.000 0.67
D dev D maint. 0.41 0.27
A dev B first half 0.77 0.000
A dev C 0.11 0.000
A dev D dev. 0.07 0.000
B first half |C 0.09 0.02
B first half |D dev 0.07 0.95
C D dev 0.45 0.11

Commits per person day are on a similar level in all projects and project
phases except for project A where they are about twice as high as in the other
projects. This difference is statistically significant. The only possible cause we
see would be a different team culture where developers try to integrate their
changes as soon as possible.

The other metrics show moderate inter-project variation. Average RFCC per
person day is between 75 and 111, which is higher than the average of 50 we
have observed in comparable industry projects. For the low value of RFSLoC
absolute growth in project C see the explanation above.

Benchmarking ongoing development output in real-life software projects 9
5 Discussion

Our data shows correlations between the effort invested and any of the chosen
output metrics as well as significant differences in productivity between projects
and project phases. We consider this an indicator for the expressiveness of the
metrics, as described in section 3.4. There are however particular strengths and
weaknesses of each metric that we will discuss in the following.

First of all, Commits per person day differs from the other metrics. In project
A and B, it changes little with the transition from development to mainte-
nance,/bugfixing phases (see figure 6). This could be seen both as an advantage—
making work comparable regardless of the project phase—and as a drawback
because the fact that less software is created for the same effort is not reflected.
Commits can be easily counted for arbitrary time periods, but the result is
obviously influenced by the development process and branching strategy used,
hindering inter-project comparison. For instance, merging the trunk into a fea-
ture branch to keep it up to date or committing small changes to see the results
in the CI pipeline will increase the number of commits, while squashing commits
in Git or working locally before committing a larger feature will reduce it. The
metric could also be easily manipulated by committing more often, and frequent
corrections could lead to a higher commit number although it is always the same
code that is changed.

Changed LoC, RFCC and CC, i.e. the metrics that measure actual code
change, are inherently vulnerable to an effect known as coastline paradox in other
domains [20]. The smaller the measurement interval is chosen, the larger the total
sum for the length of an irregular path like a coastline will be. In our case, the
smaller the length of the time periods to be analyzed is chosen, the larger the
sum of all change measures for the overall project. For instance, a code line that
is changed or corrected multiple times will be recognized as a single change with
a large interval while counting multiple times with smaller intervals®. Similarly,
code that is temporarily added and later removed may not appear with a large
analysis interval at all*. In order to counter this effect, the analysis interval
should neither be chosen too small nor too large, from our experience between
3 and 12 months. In order to quantify the effect, we experimentally varied the
interval length for project C: using 1 / 2 / 6 / 12 months instead of 3 changes
the total sum by +20% / +4% / —4% / —10%.

The same metrics are also vulnerable to automated refactorings that change
a lot of code with a single command, such as renaming a package. Changed LoC
is most vulnerable as it is even affected by changes in code format, RFCC' least
as it will detect and ignore certain refactorings such as moving code around.

In contrast, SLoC' absolute growth and RFSLoC absolute growth are immune
to these effects but can, on the other hand, not detect deliberate changes of

3 The extreme case would be to analyze every commit separately, as in the Git “Lines
of code changed” statistics.

4 From a business point of view, changing the code multiple times does not represent
economic value unless it was for a temporarily needed feature.

10 J. Streit and L. Feye

existing functionality or a situation where large amounts of code were deleted
and new code added, as in project C. This is a drawback for ongoing development
projects.

All code-based metrics can be influenced by adding generated code or 3rd
party modules to the codebase, which is why we demand to exclude such code
from the measurement (see section 3.1). On the other hand, the code-based
metrics are closer to the output of software development, i.e. implementing or
changing features of a software system, than Commits. RFCC and RFSLoC
absolute growth are less vulnerable to accidentally included generated code as
this code is usually highly redundant.

Conclusively, we answer RQ1 positively. The measurement results fit with
the actual project histories, e.g. phase transitions, and we therefore think the
metrics can provide insights on development productivity also in other projects
and allow for inter-project comparison. Automation allows for repeatable, low-
cost and thus continuous measurement. The metrics should however be used
with caution, as discussed in the following section.

No single metric stands out for RQ2: RFCC has slightly higher correla-
tion than the other code-based metrics but for the ease of measurement any
other code change metric could also be employed. Commits can be used for
comparisons within a project but is not well suited for inter-project comparison
or benchmarking. It could be used as a complement that provides a different
perspective. Similarly, we consider absolute growth metrics such as RFSLoC a
possible complement.

RQ3: Correlations are slightly higher and more significant for the redundancy-
adjusted versions of the metrics (RFCC and RFSLoC absolute growth) than for
the normal ones (CC and SLoC' absolute growth). In order to verify this effect
from another perspective, we analyzed in detail the five time periods of project
A where RFCC and CC differ significantly (see figure 7 in red). Two of them
represent the starting phase, the three others contained large changes that re-
named, split or moved modules, i.e. situations where considerable amounts of
code were affected with moderate effort. The lower value of RFCC compared to
CC seems more plausible here.

We can thus answer this RQ positively, although the difference is small.
As the company in the study attaches great importance to clone avoidance,
the difference may be larger in the average software project than in the ones
here. A drawback of the redundancy-adjusted metrics is that more advanced
measurement tooling is needed and the results are not as straightforward to
comprehend and communicate.

5.1 Use with caution

The use of code-size related metrics for benchmarking bears well-known risks
as discussed in [18]. Depending on its use, the information may be interpreted
wrongly or create incentives to write code as verbose as possible. We therefore
strongly recommend to

Benchmarking ongoing development output in real-life software projects 11

— not use any of the metrics presented here as the only source of information.
They should be complemented e.g. by tracking completion of planned fea-
tures, customer satisfaction, defect rates or code quality. Discrepancies can
provide valuable insights, e.g. high activity in the code but slow progress
from a feature perspective may indicate architectural overhead.

— not measure too finely, such as by week or individual developer. Longer time
periods will level out noise from daily variation, the coastline paradox dis-
cussed above and effects such as someone writing code in a “quick and dirty”
manner and having to correct it afterwards, possibly in multiple attempts.
Team scope reduces the incentive to adapt to the metric and accounts for
heterogeneous role distributions such as one person doing all reviews.

— include most project activities into effort calculation, such as developer meet-
ings and ceremonies, technical design, code reviews and bug fixing. This puts
the focus on overall productivity and appreciates e.g. time spent in thorough
design to avoid rework. Activities related to requirements engineering, ac-
ceptance testing, operation and support can be excluded from effort data.

— be consistent about inclusion and exclusion of code parts and effort.

— not attach penalties or incentives for the developers directly to the measure-
ments as this will make people adapt their working style to the metric, e.g.
committing frequently or writing particularly verbose code. As discussed in
[18] the redundancy-free metrics seem less vulnerable to manipulation. In
the present study measurement was performed ex post so no incentive to
manipulate the metrics existed for the developers.

— consider the context when comparing between projects. This should not
be used as an excuse (most people consider the system they are working
on particularly “complex” and “critical”’) but of course working on a large
taxation calculation core will require more analysis effort than building a
simple database frontend. Expressiveness of programming language differs
(see [12] for lines of code per function point tables) as well as available tool
support and libraries e.g. for Java and COBOL.

5.2 Threats to validity

The study was performed with only four projects from the same company and
similar domains and technology stacks, which may limit generalizability.

Separation of project phases, attribution of effort etc. is never 100% consis-
tent in a real-world project. Long-running branches can impact measurements
when the metrics are calculated only on the main branch—the result from effort
that has been invested earlier will not become visible for code-related metrics un-
til a merge is performed. Also developer fluctuation and different characteristics
of the components being built during the course of the project provoke changes
where we assume homogeneous conditions. This may influence the results.

Differences between projects are surely multi-causal and the possible explana-
tions given can only be assumptions of the most probable causes. Characteristics
of projects and project phases were collected and written down ex post and this
process may have been biased by the already known metrics results.

12 J. Streit and L. Feye

No comparison with functional size measurements, business value or esti-
mates such as story points could be made for lack of such data. It is however
clear that code-based metrics can only measure code and may, in edge-cases like
an extremely verbose or inadequate implementation of a trivial functionality,
yield results that are unsatisfying from a business perspective.

6 Conclusion

In this paper we have analyzed productivity values based upon different output
metrics, in particular code change, and monthly effort data from four real-world
software industry projects performed by the company itestra. We have shown
that effort and output correlate within a given project and that significant and
explainable productivity differences between projects and project phases exist.
For instance, the transition from development to maintenance/bugfixing was in
two projects associated with a drop in code output while the commit frequency
remained stable. We conclude from our data that code change metrics can be
(and we believe shound be) used for analyzing a project’s productivity, if applied
carefully and together with additional KPI. In contrast to story points they
offer the possibility to benchmark against other projects. This is important as
development teams have sometimes worked for years on the same system and
comparison with benchmark values “outside the bubble” provides them with an
independent view on possible productivity improvement.

In 15 years of our consulting work we have observed productivity values
ranging from 9 RFCC per person day (in average over a team and year) at
the bottom to 140 at the top for systems of similar size and complexity. Many
researchers report a similarly large spread, e.g. in [6]. This cannot only be an
effect of varying coding style or effort tracking, but we rather suspect differences
in developer qualification and motivation, process overhead or quality deficits
in the software. We consider the measurement and subsequent improvement of
development productivity an enormous economic potential for the industry.

Future work should gather data on more projects and systematically track
events throughout the course of the projects such as larger changes in team
structure or development process.

7 Data availability
Due to confidentiality we cannot disclose the source code or additional informa-

tion on the analyzed systems. The measurement data per time period and project
used can be obtained at https://zenodo.org/doi/10.5281/zenodo.10265084.

References

1. International Software Benchmarking Standards Group, http://isbsg.org
2. Armour, P.G.: Beware of counting LOC. Communications of the ACM 47 (2004)

oo

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

22.

Benchmarking ongoing development output in real-life software projects 13

Barb, A., Neill, C., Sangwan, R., Piovoso, M.: A statistical study of the relevance
of lines of code measures in software projects. Innovations in Systems and Software
Engineering 10(4) (2014). https://doi.org/10.1007/s11334-014-0231-5

Beck, K.: Outcome over output: Also impact and effort (2000),
https://medium.com/@kentbeck 7670/outcome-over-output-also-impact-and-
effort-8f9eb0ce0dbb

Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley (2000)
Boehm, B.: Software Cost estimation with COCOMO II (2002)

Deissenboeck, F., Juergens, E., Hummel, B., Wagner, S., Parareda, B.M.y., Pizka,
M.: Tool support for continuous quality control. IEEE Software 25(5) (2008).
https://doi.org/10.1109,/MS.2008.129

Drouin, N., Badri, M., Touré, F.: Analyzing software quality evolution using met-
rics: An empirical study on open source software. J. Softw. 8(10) (2013)
Fernandez-Ramil, J., Lehman, M.: Metrics of software evolution as effort predictors
- a case study (2000). https://doi.org/10.1109/ICSM.2000.883036

Forsgren, N.; Storey, M.A., Maddila, C., Zimmermann, T., Houck, B., Butler, J.:
The SPACE of developer productivity. ACM Queue 19 (2021)

Hill, P. (ed.): Practical Software Project Estimation: A Toolkit for Estimating
Software Development Effort & Duration. McGraw Hill (2010)

Jones, C.: Estimating Software Costs : Bringing Realism to Estimating. McGraw-
Hill,, New York:, 2nd ed. edn. (2007)

Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones mat-
ter? In: 2009 IEEE 31st International Conference on Software Engineering (2009).
https://doi.org/10.1109/ICSE.2009.5070547

Kocaguneli, E., Misirli, A.T., Caglayan, B., Bener, A.: Experiences on de-
veloper participation and effort estimation. In: 2011 37th EUROMICRO
Conference on Software Engineering and Advanced Applications (2011).
https://doi.org/10.1109/SEAA.2011.71

Myers, E.: An o(nd) difference algorithm and its variations (1985)

Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: Proceedings. 27th International Conference on Software Engi-
neering, 2005. ICSE 2005. (2005). https://doi.org/10.1109/ICSE.2005.1553571
Oliveira, E., Viana, D., Cristo, M., Conte, T.: How have software engineer-
ing researchers been measuring software productivity? - a systematic map-
ping study. In: Proceedings of the 19th International Conference on Enter-
prise Information Systems - Volume 2: ICEIS,. INSTICC, SciTePress (2017).
https://doi.org/10.5220,/0006314400760087

Mas y Parareda, B., Pizka, M.: Measuring productivity using the infamous lines
of code metric. In: The First International Workshop on Software Productivity
Analysis and Cost Estimation, Nagoya, Japan, Proceedings (2007)

Pizka, M., Panas, T.: Establishing economic effectiveness through software health-
management. In: 1st International Workshop on Software Health Management
(SHM 2009). Pasadena, CA (2009)

Richardson, L.F.: Fractals, vol. 1. Cambridge University Press (1993)

Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complex-
ity, code churn, and developer activity metrics as indicators of software
vulnerabilities. IEEE Transactions on Software Engineering 37(6) (2011).
https://doi.org/10.1109/TSE.2010.81

Tan, T., Li, Q., Boehm, B., Yang, Y., He, M., Moazeni, R.: Produc-
tivity trends in incremental and iterative software development (2009).
https://doi.org/10.1145/1671248.1671250

14 J. Streit and L. Feye

5000
4500
4000 =8=Changed LoC

3500 g RFCC

3000
=@ RFSLOC abs. growth
2500

2000 =@ Commits

RFCC / Changed LoC / RFSLoC
g
8

30000
1500 === Effort
20000
1000
10000 o
0 0
70000 4500
o000 000
g 3500
50000
& 300 »
9 E
3 0000 2500 £
3 S
£ 30000 2000 7
s 3
2 1500 £
3 20000
g 1000
10000 .
o o
70000 3500
60000 3000
g
£ 50000 2500
= £
3 £
3 40000 20 £
=z 3
g <
£ 30000 1500 &
° 2
3 20000 1000
g
10000 500

14000

g B
g g

8
Hours / Commits

RFCC / Changed SLoC / RFSLoC
g g

Fig. 1. Metric results for projects A to D.
Effort is in hours instead of days in this diagram in order to use a common scale with
Commits. The y-axis starts at zero even if absolute growth happens to be negative.
The vertical line marks the separation of project phases in A, B and D.

Benchmarking ongoing development output in real-life software projects 15

09
038
0,7 . . B Changed LoC
06 : |cc
05 ' mRFCC

. . B SloC abs. growth
0,4 .

- j BRFSLoC abs. growth
03 . . .

. _ B Commits
0,2 *|k Hlx Al £ .

. . p<0,01
o1 | | % M * 0001

£3 £ i B *|
0 : b
A B c D

Fig. 2. Spearman correlation coefficients for different output metrics and projects cor-

related with effort

250

o]

Cc

A Adev Amaint. B B first B D Ddev D maint.
phase Phase half second phase Phase
half

Fig. 3. Mean Changed LoC per person day for all projects including standard error

Cc

A Adev Amaint. B B first B D D dev D maint.
phase Phase half second phase Phase
half

Fig. 4. Mean RFCC per person day for all projects including standard error

16 J. Streit and L. Feye

100
90
80
70
50
50
40
30
20
10
0

A Adev Amaint. B Bfirst B C D D dev D maint.

phase Phase half second phase Phase

half

Fig. 5. Mean RFSLoC absolute growth per person day for all projects including stan-
dard error

IS

~

8

| I

0 III 'I'
C

A Adev A maint. B B first B D Ddev D maint.
phase Phase half second phase Phase
half

Fig. 6. Mean Commits per person day for all projects including standard error

60000 .

50000

40000

30000

cc

20000

10000

0 10000 20000 30000 40000 50000 60000
RFCC

Fig.7. RFCC vs CC values for project A, outliers marked in red

